G-Filter's Gaussianization Function for Interference Background

Wang Pingbo, Liu Feng, C. Zhiming, Tang Suofu
{"title":"G-Filter's Gaussianization Function for Interference Background","authors":"Wang Pingbo, Liu Feng, C. Zhiming, Tang Suofu","doi":"10.1109/WCSP.2009.5371444","DOIUrl":null,"url":null,"abstract":"By weakening the bigger and strengthening the smaller, gaussianization can enhance the gaussianity of samples and improve performance of subsequent correlation test. Firstly, an explicit definition on gaussianizing filter and a practical method to evaluate the filtering performance are given. Secondly, based on the cumulative distribution function and its inverse, one typical gaussianizing filters, so-called G-filter, are proposed and studied. Finally, instances with lake trial data are illustrated.","PeriodicalId":303366,"journal":{"name":"2010 International Conference on Signal Acquisition and Processing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2009.5371444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By weakening the bigger and strengthening the smaller, gaussianization can enhance the gaussianity of samples and improve performance of subsequent correlation test. Firstly, an explicit definition on gaussianizing filter and a practical method to evaluate the filtering performance are given. Secondly, based on the cumulative distribution function and its inverse, one typical gaussianizing filters, so-called G-filter, are proposed and studied. Finally, instances with lake trial data are illustrated.
干扰背景下G-Filter的高斯化函数
高斯化通过大的减弱,小的增强,增强了样本的高斯性,提高了后续相关检验的性能。首先给出了高斯化滤波器的明确定义和评价滤波性能的实用方法。其次,基于累积分布函数及其逆函数,提出并研究了一种典型的高斯化滤波器——g滤波器。最后,用湖泊试验数据举例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信