Linear feature extraction for hyperspectral images using information theoretic learning

M. Kamnadar, H. Ghassemian
{"title":"Linear feature extraction for hyperspectral images using information theoretic learning","authors":"M. Kamnadar, H. Ghassemian","doi":"10.1109/IRANIANCEE.2012.6292515","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new linear feature extraction scheme for hyperspectral images. A modified Maximum relevance, Min redundancy (MRMD) is used as a criterion for linear feature extraction. Parzen density estimator and instantaneous entropy estimation are used for estimating mutual information. Using Instantaneous entropy estimator mitigates nonstationary behavior of the hyperspectral data and reduces computational cost. Based on proposed estimator and MRMD, an algorithm for linear feature extraction in hyperspectral images is designed that is less offended by Hueghs phenomenon and has less computation cost for applying to hyperspectral images. An ascent gradient algorithm is used for optimizing proposed criterion with respect to parameters of a linear transform. Preliminary results achieve better classification comparing the traditional methods.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new linear feature extraction scheme for hyperspectral images. A modified Maximum relevance, Min redundancy (MRMD) is used as a criterion for linear feature extraction. Parzen density estimator and instantaneous entropy estimation are used for estimating mutual information. Using Instantaneous entropy estimator mitigates nonstationary behavior of the hyperspectral data and reduces computational cost. Based on proposed estimator and MRMD, an algorithm for linear feature extraction in hyperspectral images is designed that is less offended by Hueghs phenomenon and has less computation cost for applying to hyperspectral images. An ascent gradient algorithm is used for optimizing proposed criterion with respect to parameters of a linear transform. Preliminary results achieve better classification comparing the traditional methods.
基于信息理论学习的高光谱图像线性特征提取
本文提出了一种新的高光谱图像线性特征提取方法。采用改进的最大相关最小冗余(MRMD)作为线性特征提取的准则。互信息估计采用了Parzen密度估计和瞬时熵估计。利用瞬时熵估计器减轻了高光谱数据的非平稳特性,降低了计算成本。基于所提出的估计量和MRMD,设计了一种不受休斯现象影响、计算量较小的高光谱图像线性特征提取算法。根据线性变换的参数,采用上升梯度算法对准则进行优化。与传统方法相比,初步结果取得了较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信