New directions in information theoretic security: Benefits of bidirectional signaling

A. Yener
{"title":"New directions in information theoretic security: Benefits of bidirectional signaling","authors":"A. Yener","doi":"10.1109/ITW.2015.7133165","DOIUrl":null,"url":null,"abstract":"The past decade has witnessed significant effort towards establishing reliable and information theoretically secure rates in communication networks, taking advantage of the properties of the communication medium. Such efforts include those in the wireless medium where simultaneous transmissions and the ensuing interference can prove advantageous from an information theoretic secrecy point of view. With the goal of obtaining a secrecy rate that scales with transmit power, structured signaling with simultaneous favorable signal alignment at the legitimate receiver(s) and unfavorable signal alignment at the eavesdropper(s) has proven particularly useful in multi-terminal Gaussian channels. Many challenges remain however in realizing the vision of absolute security provided by the wireless physical layer including handling more realistic models. In this paper, we provide a brief overview of the state of the art, the forward look and argue for an additional asset that could be utilized for secrecy, i.e., bidirectional signaling. Taking the bidirectional wiretap channel as an example, Gaussian signaling is demonstrated to be as good as structured signaling from the degrees of freedom point of view, while observed to be performing better with finite transmit power. Moreover, taking bidirectional signals explicitly into account for encoding performs even better and provides a way forward to synergistically combine physical layer based secrecy and encryption.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The past decade has witnessed significant effort towards establishing reliable and information theoretically secure rates in communication networks, taking advantage of the properties of the communication medium. Such efforts include those in the wireless medium where simultaneous transmissions and the ensuing interference can prove advantageous from an information theoretic secrecy point of view. With the goal of obtaining a secrecy rate that scales with transmit power, structured signaling with simultaneous favorable signal alignment at the legitimate receiver(s) and unfavorable signal alignment at the eavesdropper(s) has proven particularly useful in multi-terminal Gaussian channels. Many challenges remain however in realizing the vision of absolute security provided by the wireless physical layer including handling more realistic models. In this paper, we provide a brief overview of the state of the art, the forward look and argue for an additional asset that could be utilized for secrecy, i.e., bidirectional signaling. Taking the bidirectional wiretap channel as an example, Gaussian signaling is demonstrated to be as good as structured signaling from the degrees of freedom point of view, while observed to be performing better with finite transmit power. Moreover, taking bidirectional signals explicitly into account for encoding performs even better and provides a way forward to synergistically combine physical layer based secrecy and encryption.
信息安全理论的新方向:双向信令的好处
在过去的十年中,利用通信媒介的特性,为建立可靠和理论上信息安全的通信网络速率作出了重大努力。这类努力包括在无线介质中的努力,从信息理论保密的角度来看,同时传输和随后的干扰可以证明是有利的。为了获得与发射功率成比例的保密率,在合法接收端同时具有有利信号对齐和窃听端同时具有不利信号对齐的结构化信令已被证明在多终端高斯信道中特别有用。然而,在实现无线物理层提供的绝对安全愿景方面仍然存在许多挑战,包括处理更现实的模型。在本文中,我们简要概述了目前的技术状况,展望未来,并提出了一种可用于保密的额外资产,即双向信令。以双向窃听信道为例,从自由度的角度证明高斯信令与结构化信令一样好,而在有限发射功率下表现更好。此外,将双向信号明确地考虑到编码的性能甚至更好,并提供了一种协同结合基于物理层的保密和加密的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信