Blind source separation based on improved natural gradient algorithm

Ji Ce, Yu Peng, Yu Yang
{"title":"Blind source separation based on improved natural gradient algorithm","authors":"Ji Ce, Yu Peng, Yu Yang","doi":"10.1109/WCICA.2010.5554217","DOIUrl":null,"url":null,"abstract":"The natural gradient algorithm is the most basic independent component analysis (ICA) algorithm. Because the traditional natural gradient algorithm adopts fixed-step-size, the choice of step size directly affects the convergence speed and steady-state performance. This paper proposes an improved natural gradient algorithm by using the difference between the separation matrixes to control the factor of step size. The algorithm is a good solution to the trade-offs problems of convergence speed and steady-state performance. Meanwhile, the complexity of the algorithm is lower than the algorithm of reference [2] and reference [11]. The computer simulations have proved the effectiveness of the algorithm.","PeriodicalId":315420,"journal":{"name":"2010 8th World Congress on Intelligent Control and Automation","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 8th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2010.5554217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The natural gradient algorithm is the most basic independent component analysis (ICA) algorithm. Because the traditional natural gradient algorithm adopts fixed-step-size, the choice of step size directly affects the convergence speed and steady-state performance. This paper proposes an improved natural gradient algorithm by using the difference between the separation matrixes to control the factor of step size. The algorithm is a good solution to the trade-offs problems of convergence speed and steady-state performance. Meanwhile, the complexity of the algorithm is lower than the algorithm of reference [2] and reference [11]. The computer simulations have proved the effectiveness of the algorithm.
基于改进自然梯度算法的盲源分离
自然梯度算法是最基本的独立分量分析(ICA)算法。由于传统的自然梯度算法采用固定步长,因此步长的选择直接影响算法的收敛速度和稳态性能。本文提出了一种改进的自然梯度算法,利用分离矩阵的差值来控制步长因子。该算法很好地解决了收敛速度和稳态性能的权衡问题。同时,该算法的复杂度低于文献[2]和文献[11]的算法。计算机仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信