The quantum Witten–Kontsevich series and one-part double Hurwitz numbers

X. Blot
{"title":"The quantum Witten–Kontsevich series and\none-part double Hurwitz numbers","authors":"X. Blot","doi":"10.2140/gt.2022.26.1669","DOIUrl":null,"url":null,"abstract":"We study the quantum Witten-Kontsevich series introduced by Buryak, Dubrovin, Guere and Rossi in \\cite{buryak2016integrable} as the logarithm of a quantum tau function for the quantum KdV hierarchy. This series depends on a genus parameter $\\epsilon$ and a quantum parameter $\\hbar$. When $\\hbar=0$, this series restricts to the Witten-Kontsevich generating series for intersection numbers of psi classes on moduli spaces of stable curves. We establish a link between the $\\epsilon=0$ part of the quantum Witten-Kontsevich series and one-part double Hurwitz numbers. These numbers count the number non-equivalent holomorphic maps from a Riemann surface of genus $g$ to $\\mathbb{P}^{1}$ with a prescribe ramification profile over $0$, a complete ramification over $\\infty$ and a given number of simple ramifications elsewhere. Goulden, Jackson and Vakil proved in \\cite{goulden2005towards} that these numbers have the property to be polynomial in the orders of ramification over $0$. We prove that the coefficients of these polynomials are the coefficients of the quantum Witten-Kontsevich series. We also present some partial results about the full quantum Witten-Kontsevich power series.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study the quantum Witten-Kontsevich series introduced by Buryak, Dubrovin, Guere and Rossi in \cite{buryak2016integrable} as the logarithm of a quantum tau function for the quantum KdV hierarchy. This series depends on a genus parameter $\epsilon$ and a quantum parameter $\hbar$. When $\hbar=0$, this series restricts to the Witten-Kontsevich generating series for intersection numbers of psi classes on moduli spaces of stable curves. We establish a link between the $\epsilon=0$ part of the quantum Witten-Kontsevich series and one-part double Hurwitz numbers. These numbers count the number non-equivalent holomorphic maps from a Riemann surface of genus $g$ to $\mathbb{P}^{1}$ with a prescribe ramification profile over $0$, a complete ramification over $\infty$ and a given number of simple ramifications elsewhere. Goulden, Jackson and Vakil proved in \cite{goulden2005towards} that these numbers have the property to be polynomial in the orders of ramification over $0$. We prove that the coefficients of these polynomials are the coefficients of the quantum Witten-Kontsevich series. We also present some partial results about the full quantum Witten-Kontsevich power series.
量子Witten-Kontsevich级数和一元双Hurwitz数
我们研究了由Buryak, Dubrovin, Guere和Rossi在\cite{buryak2016integrable}中引入的量子Witten-Kontsevich级数作为量子KdV层次的量子tau函数的对数。这个系列依赖于一个属参数$\epsilon$和一个量子参数$\hbar$。当$\hbar=0$时,该级数限制为稳定曲线模空间上psi类的交数的Witten-Kontsevich生成级数。我们建立了量子Witten-Kontsevich级数的$\epsilon=0$部分与一元双Hurwitz数之间的联系。这些数字计算了从属$g$到$\mathbb{P}^{1}$的黎曼曲面的非等价全纯映射的数量,这些映射在$0$上具有规定的分支轮廓,在$\infty$上具有完全分支,在其他地方具有给定数量的简单分支。Goulden, Jackson和Vakil在\cite{goulden2005towards}中证明了这些数在$0$上的分支数量级上具有多项式的性质。我们证明了这些多项式的系数是量子Witten-Kontsevich级数的系数。给出了关于全量子Witten-Kontsevich幂级数的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信