Result identification for biomedical abstracts using Conditional Random Fields

Ryan T. K. Lin, Hong-Jie Dai, Yue-Yang Bow, Min-Yuh Day, Richard Tzong-Han Tsai, W. Hsu
{"title":"Result identification for biomedical abstracts using Conditional Random Fields","authors":"Ryan T. K. Lin, Hong-Jie Dai, Yue-Yang Bow, Min-Yuh Day, Richard Tzong-Han Tsai, W. Hsu","doi":"10.1109/IRI.2008.4583016","DOIUrl":null,"url":null,"abstract":"For biomedical research, the most important parts of an abstract are the result and conclusion sections. Some journals divide an abstract into several sections so that readers can easily identify those parts, but others do not. We propose a method that can automatically identify the result and conclusion sections of any biomedical abstracts by formulating this identification problem as a sequence labeling task. Three feature sets (Position, Named Entity, and Word Frequency) are employed with Conditional Random Fields (CRFs) as the underlying machine learning model. Experimental results show that the combination of our proposed feature sets can achieve F-measure, precision, and recall scores of 92.50%, 95.32% and 89.85%, respectively.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2008.4583016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

For biomedical research, the most important parts of an abstract are the result and conclusion sections. Some journals divide an abstract into several sections so that readers can easily identify those parts, but others do not. We propose a method that can automatically identify the result and conclusion sections of any biomedical abstracts by formulating this identification problem as a sequence labeling task. Three feature sets (Position, Named Entity, and Word Frequency) are employed with Conditional Random Fields (CRFs) as the underlying machine learning model. Experimental results show that the combination of our proposed feature sets can achieve F-measure, precision, and recall scores of 92.50%, 95.32% and 89.85%, respectively.
基于条件随机场的生物医学摘要结果识别
对于生物医学研究,摘要中最重要的部分是结果和结论部分。有些期刊将摘要分成几个部分,以便读者可以很容易地识别这些部分,但有些期刊则不这样做。我们提出了一种可以自动识别任何生物医学摘要的结果和结论部分的方法,通过将这种识别问题表述为序列标记任务。三个特征集(位置、命名实体和词频)与条件随机场(CRFs)一起作为底层机器学习模型。实验结果表明,我们提出的特征集组合可以分别达到92.50%、95.32%和89.85%的F-measure、precision和recall分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信