Completing nth powers of polynomials

B. Trager, D. Yun
{"title":"Completing nth powers of polynomials","authors":"B. Trager, D. Yun","doi":"10.1145/800205.806355","DOIUrl":null,"url":null,"abstract":"A frequent exercise in high school algebra courses is completing the square of some given polynomial. The goal is to find terms involving only constants independent of the main variable, which when added to the given polynomial will result in a perfect square. As a typical example, (x<supscrpt>2</supscrpt> + 4x + 3) + 1 &equil; (x+2)<supscrpt>2</supscrpt>. The method for completing the square such as this one is often nothing more than applying the pattern matching abilities of students to the problem knowing the pattern (x+y)<supscrpt>2</supscrpt> &equil; x<supscrpt>2</supscrpt> + 2xy + y<supscrpt>2</supscrpt>. Here, we ask the question whether this problem can be generalized and whether there exists a constructive algorithm that replaces and extends the simple completion procedure of our high school days. The answer turns out to lie in the familiar process of computing polynomial remainder sequences (PRS) [Brown71].","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800205.806355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A frequent exercise in high school algebra courses is completing the square of some given polynomial. The goal is to find terms involving only constants independent of the main variable, which when added to the given polynomial will result in a perfect square. As a typical example, (x2 + 4x + 3) + 1 &equil; (x+2)2. The method for completing the square such as this one is often nothing more than applying the pattern matching abilities of students to the problem knowing the pattern (x+y)2 &equil; x2 + 2xy + y2. Here, we ask the question whether this problem can be generalized and whether there exists a constructive algorithm that replaces and extends the simple completion procedure of our high school days. The answer turns out to lie in the familiar process of computing polynomial remainder sequences (PRS) [Brown71].
完成多项式的n次幂
在高中代数课程中,一个常见的练习是完成某个给定多项式的平方。目标是找到只涉及与主变量无关的常数的项,当将这些常数加到给定的多项式上将得到一个完全平方。作为一个典型的例子,(x2 + 4x + 3) + 1 &equil;(x + 2) 2。完成像这样的正方形的方法通常只不过是将学生的模式匹配能力应用于知道模式(x+y)2 & equequal;X2 + 2xy + y2。在这里,我们提出一个问题,这个问题是否可以推广,是否存在一个建设性的算法来取代和扩展我们高中时代的简单完成程序。答案在于我们熟悉的计算多项式余数序列(PRS)的过程[Brown71]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信