L. Prevost, C. Michel-Sendis, A. Moises, L. Oudot, M. Milgram
{"title":"Combining model-based and discriminative classifiers: application to handwritten character recognition","authors":"L. Prevost, C. Michel-Sendis, A. Moises, L. Oudot, M. Milgram","doi":"10.1109/ICDAR.2003.1227623","DOIUrl":null,"url":null,"abstract":"Handwriting recognition is such a complex classification problem that it is quite usual now to make co-operate several classification methods at the pre-processing stage or at the classification stage. In this paper, we present an original two stages recognizer. The first stage is a model-based classifier that stores an exhaustive set of character models. The second stage is a discriminative classifier that separates the most ambiguous pairs of classes. This hybrid architecture is based on the idea that the correct class almost systematically belongs to the two more relevant classes found by the first classifier. Experiments on the Unipen database show a 30% improvement on a 62 class recognition problem.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Handwriting recognition is such a complex classification problem that it is quite usual now to make co-operate several classification methods at the pre-processing stage or at the classification stage. In this paper, we present an original two stages recognizer. The first stage is a model-based classifier that stores an exhaustive set of character models. The second stage is a discriminative classifier that separates the most ambiguous pairs of classes. This hybrid architecture is based on the idea that the correct class almost systematically belongs to the two more relevant classes found by the first classifier. Experiments on the Unipen database show a 30% improvement on a 62 class recognition problem.