On geometry of Kenmotsu manifolds with N-connection

A. Bukusheva
{"title":"On geometry of Kenmotsu manifolds with N-connection","authors":"A. Bukusheva","doi":"10.5922/0321-4796-2019-50-7","DOIUrl":null,"url":null,"abstract":"A Kenmotsu manifold with a given N-connection is considered. From the integrability of the distribution of a Kenmotsu manifold it follows that the N-connection belongs to the class of the quarter-symmetric connections. Among the N-connections, the class of connections adapted to the structure of the Kenmotsu manifold is specified. In particular, it is proved that an N-connection preserves the structure endomorphism φ of the Kenmotsu manifold if and only if the endomorphisms N and φ commute. A formula expressing the N-connection in terms of the Levi-Civita connection is obtained. The Chrystoffel symbols of the Levi-Civita connection and of the N-connection of the Kenmotsu manifold with respect to the adapted coordinates are computed. The properties of the invariants of the interior geometry of the Kenmotsu manifolds are investigated. The invariants of the interior geometry are the following: the Schouten curvature tensor; the 1-form  defining the distribution D; the Lie derivative 0   L g of the metric tensor g along the vector field ;  the tensor field P with the components given with respect to the adapted coordinate system by the formula Pacd  ncad . The field P is called in the work the Schouten — Wagner tensor. It is proved that the Schouten — Wagner tensor of the interior connection of the Kenmotsu manifold is zero. The conditions that satisfies the endomorphism N defining the metric N-connection are found. At the end of the work, an example of a Kenmotsu manifold with a metric N-connection preserving the structure endomorphism φ is given.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Kenmotsu manifold with a given N-connection is considered. From the integrability of the distribution of a Kenmotsu manifold it follows that the N-connection belongs to the class of the quarter-symmetric connections. Among the N-connections, the class of connections adapted to the structure of the Kenmotsu manifold is specified. In particular, it is proved that an N-connection preserves the structure endomorphism φ of the Kenmotsu manifold if and only if the endomorphisms N and φ commute. A formula expressing the N-connection in terms of the Levi-Civita connection is obtained. The Chrystoffel symbols of the Levi-Civita connection and of the N-connection of the Kenmotsu manifold with respect to the adapted coordinates are computed. The properties of the invariants of the interior geometry of the Kenmotsu manifolds are investigated. The invariants of the interior geometry are the following: the Schouten curvature tensor; the 1-form  defining the distribution D; the Lie derivative 0   L g of the metric tensor g along the vector field ;  the tensor field P with the components given with respect to the adapted coordinate system by the formula Pacd  ncad . The field P is called in the work the Schouten — Wagner tensor. It is proved that the Schouten — Wagner tensor of the interior connection of the Kenmotsu manifold is zero. The conditions that satisfies the endomorphism N defining the metric N-connection are found. At the end of the work, an example of a Kenmotsu manifold with a metric N-connection preserving the structure endomorphism φ is given.
关于n -连接的Kenmotsu流形的几何
考虑具有给定n连接的Kenmotsu流形。从Kenmotsu流形分布的可积性可以得出n -连接属于四分之一对称连接类。在n个连接中,指定了适合于Kenmotsu流形结构的连接类。特别地,证明了N-连接保持Kenmotsu流形的结构自同态φ当且仅当自同态N与φ交换。得到了用Levi-Civita连接表示n连接的公式。计算了Kenmotsu流形的Levi-Civita连接和n -连接的克里斯托费尔符号。研究了Kenmotsu流形的内几何不变量的性质。内部几何的不变量如下:Schouten曲率张量;1-form定义分布D;度规张量g沿向量场的李氏导数0lg;张量场P,其分量由公式Pacdncad给出。场P在著作中称为Schouten - Wagner张量。证明了Kenmotsu流形内连接的Schouten - Wagner张量为零。给出了满足自同态N定义度量N连接的条件。最后给出了一个具有度量n -连通的Kenmotsu流形保持结构自同态φ的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信