A new validation index for determining the number of clusters in a data set

Hao-jun Sun, Shengrui Wang, Q. Jiang
{"title":"A new validation index for determining the number of clusters in a data set","authors":"Hao-jun Sun, Shengrui Wang, Q. Jiang","doi":"10.1109/IJCNN.2001.938445","DOIUrl":null,"url":null,"abstract":"Clustering analysis plays an important role in solving practical problems in such domains as data mining in large databases. In this paper, we are interested in fuzzy c-means (FCM) based algorithms. The main purpose is to design an effective validity function to measure the result of clustering and detecting the best number of clusters for a given data set in practical applications. After a review of the relevant literature, we present the new validity function. Experimental results and comparisons will be given to illustrate the performance of the new validity function.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Clustering analysis plays an important role in solving practical problems in such domains as data mining in large databases. In this paper, we are interested in fuzzy c-means (FCM) based algorithms. The main purpose is to design an effective validity function to measure the result of clustering and detecting the best number of clusters for a given data set in practical applications. After a review of the relevant literature, we present the new validity function. Experimental results and comparisons will be given to illustrate the performance of the new validity function.
一种新的验证索引,用于确定数据集中簇的数量
聚类分析在解决大型数据库数据挖掘等领域的实际问题中发挥着重要作用。在本文中,我们感兴趣的是基于模糊c均值(FCM)的算法。主要目的是设计一个有效的有效性函数来衡量聚类结果,并在实际应用中检测给定数据集的最佳聚类数。在回顾了相关文献后,我们提出了新的效度函数。实验结果和对比说明了新有效性函数的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信