Sparsity-Aware Tensor Decomposition

Süreyya Emre Kurt, S. Raje, Aravind Sukumaran-Rajam, P. Sadayappan
{"title":"Sparsity-Aware Tensor Decomposition","authors":"Süreyya Emre Kurt, S. Raje, Aravind Sukumaran-Rajam, P. Sadayappan","doi":"10.1109/ipdps53621.2022.00097","DOIUrl":null,"url":null,"abstract":"Sparse tensor decomposition, such as Canonical Polyadic Decomposition (CPD), is a key operation for data analytics and machine learning. Its computation is dominated by a set of MTTKRP (Matricized Tensor Times Khatri Rao Product) operations. The collection of required MTTKRP operations for sparse CPD include common sub-computations across them and many approaches exist to factorize and reuse common sub-expressions. Prior work on sparse CPD has focused on minimizing the number of high-level operators. In this paper, we consider a design space that covers whether the partial MTTKRP results should be saved, different mode permutations and model the total volume of data movement to/from memory. Also, we propose a fine-grained load balancing method that supports higher levels of parallelization.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sparse tensor decomposition, such as Canonical Polyadic Decomposition (CPD), is a key operation for data analytics and machine learning. Its computation is dominated by a set of MTTKRP (Matricized Tensor Times Khatri Rao Product) operations. The collection of required MTTKRP operations for sparse CPD include common sub-computations across them and many approaches exist to factorize and reuse common sub-expressions. Prior work on sparse CPD has focused on minimizing the number of high-level operators. In this paper, we consider a design space that covers whether the partial MTTKRP results should be saved, different mode permutations and model the total volume of data movement to/from memory. Also, we propose a fine-grained load balancing method that supports higher levels of parallelization.
稀疏感知张量分解
稀疏张量分解,如规范多进分解(CPD),是数据分析和机器学习的关键操作。它的计算主要由一组MTTKRP(矩阵化张量乘以Khatri Rao积)运算控制。稀疏CPD所需的MTTKRP操作集合包括它们之间的公共子计算,并且存在许多方法来分解和重用公共子表达式。先前关于稀疏CPD的工作主要集中在最小化高级运算符的数量上。在本文中,我们考虑了一个设计空间,包括是否应该保存部分MTTKRP结果,不同的模式排列以及向内存/从内存中移动的数据总量的模型。此外,我们还提出了一种支持更高级别并行化的细粒度负载平衡方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信