{"title":"Linear gaps between degrees for the polynomial calculus modulo distinct primes","authors":"S. Buss, D. Grigoriev, R. Impagliazzo, T. Pitassi","doi":"10.1145/301250.301399","DOIUrl":null,"url":null,"abstract":"Two important algebraic proof systems are the Nullstellensatz system and the polynomial calculus (also called the Grobner system). The Nullstellensatz system is a propositional proof system based on Hilbert's Nullstellensatz, and the polynomial calculus (PC) is a proof system which allows derivations of polynomials, over some field. The complexity of a proof in these systems is measured in terms of the degree of the polynomials used in the proof. The mod p counting principle can be formulated as a set MOD/sub p//sup n/ of constant-degree polynomials expressing the negation of the counting principle. The Tseitin mod p principles, TS/sub n/(p), are translations of the MOD/sub p//sup n/ into the Fourier basis. The present paper gives linear lower bounds on the degree of polynomial calculus refutations of MOD/sub p//sup n/ over p fields of characteristic q /spl ne/ p and over rings Z/sub q/ with q,p relatively prime. These are the first linear lower bounds for the polynomial calculus. As it is well-known to be easy to give constant degree polynomial calculus (and even Nullstellensatz) refutations of the MOD/sub p//sup n/ polynomials over F/sub p/, our results imply that the MOD/sub p//sup n/ polynomials have a linear gap between proof complexity for the polynomial calculus over F/sub p/ and over F/sub q/. We also obtain a linear gap for the polynomial calculus over rings Z/sub p/ and Z/sub q/ where p, q do not have identical prime factors.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/301250.301399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116
Abstract
Two important algebraic proof systems are the Nullstellensatz system and the polynomial calculus (also called the Grobner system). The Nullstellensatz system is a propositional proof system based on Hilbert's Nullstellensatz, and the polynomial calculus (PC) is a proof system which allows derivations of polynomials, over some field. The complexity of a proof in these systems is measured in terms of the degree of the polynomials used in the proof. The mod p counting principle can be formulated as a set MOD/sub p//sup n/ of constant-degree polynomials expressing the negation of the counting principle. The Tseitin mod p principles, TS/sub n/(p), are translations of the MOD/sub p//sup n/ into the Fourier basis. The present paper gives linear lower bounds on the degree of polynomial calculus refutations of MOD/sub p//sup n/ over p fields of characteristic q /spl ne/ p and over rings Z/sub q/ with q,p relatively prime. These are the first linear lower bounds for the polynomial calculus. As it is well-known to be easy to give constant degree polynomial calculus (and even Nullstellensatz) refutations of the MOD/sub p//sup n/ polynomials over F/sub p/, our results imply that the MOD/sub p//sup n/ polynomials have a linear gap between proof complexity for the polynomial calculus over F/sub p/ and over F/sub q/. We also obtain a linear gap for the polynomial calculus over rings Z/sub p/ and Z/sub q/ where p, q do not have identical prime factors.