Investigation on Privacy-Preserving Techniques For Personal Data

Rafik Hamza, K. Zettsu
{"title":"Investigation on Privacy-Preserving Techniques For Personal Data","authors":"Rafik Hamza, K. Zettsu","doi":"10.1145/3463944.3469267","DOIUrl":null,"url":null,"abstract":"Privacy protection technology has become a crucial part of almost every existing cross-data analysis application. The privacy-preserving technique allows sharing sensitive personal information and preserves the users' privacy. This new trend influences data collection results by improving the analytical accuracy, increasing the number of participants, and better understand the participants' environments. Herein, collecting these personal data is significant to many advantageous applications such as health monitoring. Nevertheless, these applications encounter real privacy threats and concerns about handling personal information. This paper aims to determine privacy-preserving personal data mining technologies and analyze these technologies' advantages and shortcomings. Our purpose is to provide an in-depth understanding of personal data privacy and highlight important viewpoints, existing challenges, and future research directions.","PeriodicalId":394510,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463944.3469267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Privacy protection technology has become a crucial part of almost every existing cross-data analysis application. The privacy-preserving technique allows sharing sensitive personal information and preserves the users' privacy. This new trend influences data collection results by improving the analytical accuracy, increasing the number of participants, and better understand the participants' environments. Herein, collecting these personal data is significant to many advantageous applications such as health monitoring. Nevertheless, these applications encounter real privacy threats and concerns about handling personal information. This paper aims to determine privacy-preserving personal data mining technologies and analyze these technologies' advantages and shortcomings. Our purpose is to provide an in-depth understanding of personal data privacy and highlight important viewpoints, existing challenges, and future research directions.
个人资料私隐保障技术研究
隐私保护技术已经成为几乎所有现有的跨数据分析应用程序的重要组成部分。隐私保护技术允许共享敏感的个人信息,保护用户的隐私。这种新趋势通过提高分析精度、增加参与者数量以及更好地了解参与者的环境来影响数据收集结果。在这里,收集这些个人数据对于许多有利的应用程序(如健康监测)非常重要。然而,这些应用程序在处理个人信息时遇到了真正的隐私威胁和担忧。本文旨在确定保护隐私的个人数据挖掘技术,并分析这些技术的优缺点。我们的目的是提供对个人数据隐私的深入了解,并突出重要观点、存在的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信