A Modified Polyetherimide Film Exhibiting Greatly Suppressed Conduction for High-temperature Dielectric Energy Storage

Chao Wu, Abdullah Alamri, Ajinkya A. Deshmukh, Zongze Li, Shahidul Islam, G. Sotzing, Yang Cao
{"title":"A Modified Polyetherimide Film Exhibiting Greatly Suppressed Conduction for High-temperature Dielectric Energy Storage","authors":"Chao Wu, Abdullah Alamri, Ajinkya A. Deshmukh, Zongze Li, Shahidul Islam, G. Sotzing, Yang Cao","doi":"10.1109/CEIDP49254.2020.9437471","DOIUrl":null,"url":null,"abstract":"Polymer dielectrics are key materials for capacitive energy storage in electrical and electronic systems owning to their ultra-high power density and high breakdown strength. However, the dramatically increased electrical conduction leads to poor energy storage performance under high electric fields, especially at elevated temperatures. Here we introduce structural defects into Polyetherimide (PEI) to modify the high-temperature dielectric properties. The polarization and conduction properties are investigated to reveal the effect of the structural defect. The modified PEI exhibits largely improved charge-discharge efficiency at elevated temperatures due to the suppressed electrical conduction, e.g., 91 % under ~400 MV/m at 200°C. The modification of PEI through a high-throughput facile process exhibited an enormous potential in capacitive energy storage under harsh conditions. The strategy demonstrated here unveils an unexplored space for modifying established polymers by introducing local structural defects.","PeriodicalId":170813,"journal":{"name":"2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP49254.2020.9437471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Polymer dielectrics are key materials for capacitive energy storage in electrical and electronic systems owning to their ultra-high power density and high breakdown strength. However, the dramatically increased electrical conduction leads to poor energy storage performance under high electric fields, especially at elevated temperatures. Here we introduce structural defects into Polyetherimide (PEI) to modify the high-temperature dielectric properties. The polarization and conduction properties are investigated to reveal the effect of the structural defect. The modified PEI exhibits largely improved charge-discharge efficiency at elevated temperatures due to the suppressed electrical conduction, e.g., 91 % under ~400 MV/m at 200°C. The modification of PEI through a high-throughput facile process exhibited an enormous potential in capacitive energy storage under harsh conditions. The strategy demonstrated here unveils an unexplored space for modifying established polymers by introducing local structural defects.
用于高温介质储能的改性聚醚酰亚胺薄膜
聚合物电介质具有超高的功率密度和高击穿强度,是电、电子系统电容储能的关键材料。然而,电导率的急剧增加导致在高电场下,特别是在高温下,储能性能较差。本文在聚醚酰亚胺(PEI)中引入结构缺陷来改变其高温介电性能。研究了极化和导电性能,揭示了结构缺陷的影响。由于抑制了导电,改性PEI在高温下的充放电效率大大提高,例如,在200°C ~400 MV/m下,充放电效率为91%。通过高通量简易工艺修饰PEI在恶劣条件下的电容储能方面显示出巨大的潜力。这里展示的策略揭示了一个未开发的空间,通过引入局部结构缺陷来修饰已建立的聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信