Similarity Searching In Statistical Figures Based On Extracted Meta Data

M. M. Hassan, W. Al-Khatib
{"title":"Similarity Searching In Statistical Figures Based On Extracted Meta Data","authors":"M. M. Hassan, W. Al-Khatib","doi":"10.1109/CGIV.2007.76","DOIUrl":null,"url":null,"abstract":"Similarity searching is an excellent approach for getting information from subjective materials like images or videos. Some excellent works on special domains have done. We focus on statistical images. These kinds of images have some excellent features that can be clearly extractable and useable in similarity searching. But there no significant work has been done in this area. So we have done some preliminary works in this domain. By some extensive analysis we classify images of this domain in some sub domains and also identified the nature of features those can be considered as silent. We develop a prototype based on this analysis where we store extracted features information of a statistical images as meta data. Then we devise some strategy to do similarity searching using standard query formulation.","PeriodicalId":433577,"journal":{"name":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2007.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Similarity searching is an excellent approach for getting information from subjective materials like images or videos. Some excellent works on special domains have done. We focus on statistical images. These kinds of images have some excellent features that can be clearly extractable and useable in similarity searching. But there no significant work has been done in this area. So we have done some preliminary works in this domain. By some extensive analysis we classify images of this domain in some sub domains and also identified the nature of features those can be considered as silent. We develop a prototype based on this analysis where we store extracted features information of a statistical images as meta data. Then we devise some strategy to do similarity searching using standard query formulation.
基于提取元数据的统计图形相似性搜索
相似性搜索是从图像或视频等主观材料中获取信息的绝佳方法。在一些特殊的领域已经做了一些优秀的工作。我们专注于统计图像。这类图像具有一些优秀的特征,可以清晰地提取,并可用于相似度搜索。但在这方面还没有重大的工作。因此,我们在这方面做了一些初步的工作。通过广泛的分析,我们将该域的图像分类到一个子域中,并确定了那些可以被认为是沉默的特征的性质。我们在此基础上开发了一个原型,其中我们将提取的统计图像特征信息存储为元数据。然后,我们设计了一些使用标准查询公式进行相似度搜索的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信