Adaptive population importance samplers: A general perspective

Luca Martino, V. Elvira, D. Luengo, F. Louzada
{"title":"Adaptive population importance samplers: A general perspective","authors":"Luca Martino, V. Elvira, D. Luengo, F. Louzada","doi":"10.1109/SAM.2016.7569668","DOIUrl":null,"url":null,"abstract":"Importance sampling (IS) is a well-known Monte Carlo method, widely used to approximate a distribution of interest using a random measure composed of a set of weighted samples generated from another proposal density. Since the performance of the algorithm depends on the mismatch between the target and the proposal densities, a set of proposals is often iteratively adapted in order to reduce the variance of the resulting estimator. In this paper, we review several well-known adaptive population importance samplers, providing a unified common framework and classifying them according to the nature of their estimation and adaptive procedures. Furthermore, we interpret the underlying motivation for the different adaptation schemes, opening the door for novel and more efficient algorithms. Finally, we compare the performance of different algorithms available in the literature through a toy example.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Importance sampling (IS) is a well-known Monte Carlo method, widely used to approximate a distribution of interest using a random measure composed of a set of weighted samples generated from another proposal density. Since the performance of the algorithm depends on the mismatch between the target and the proposal densities, a set of proposals is often iteratively adapted in order to reduce the variance of the resulting estimator. In this paper, we review several well-known adaptive population importance samplers, providing a unified common framework and classifying them according to the nature of their estimation and adaptive procedures. Furthermore, we interpret the underlying motivation for the different adaptation schemes, opening the door for novel and more efficient algorithms. Finally, we compare the performance of different algorithms available in the literature through a toy example.
适应性种群重要性样本:概观
重要性抽样(IS)是一种著名的蒙特卡罗方法,广泛用于使用由另一个提案密度生成的一组加权样本组成的随机度量来近似兴趣分布。由于算法的性能取决于目标密度和建议密度之间的不匹配,因此经常迭代地调整一组建议,以减少结果估计器的方差。本文综述了几种著名的自适应种群重要性样本,给出了一个统一的通用框架,并根据它们的估计和自适应过程的性质对它们进行了分类。此外,我们解释了不同适应方案的潜在动机,为新颖和更有效的算法打开了大门。最后,我们通过一个简单的例子比较了文献中不同算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信