Optimizing basis function pole locations for transformer frequency response identification

Samuel Wolinski, J. Welsh, J. Tusek
{"title":"Optimizing basis function pole locations for transformer frequency response identification","authors":"Samuel Wolinski, J. Welsh, J. Tusek","doi":"10.1109/AUPEC.2013.6725408","DOIUrl":null,"url":null,"abstract":"In this paper a technique for obtaining accurate parametric models of wideband frequency domain systems is applied to modeling the frequency response of power transformers. Obtaining accurate frequency response models is a problem for conventional identification techniques, and typically results in ill-conditioning due to the frequency range and numerous resonant modes of the transformer. `Frequency Localising Basis Functions' improve the conditioning of the estimator, and hence provide a more accurate fit. The location of these functions are optimized using Particle Swarm Optimization, and applied to frequency response data taken from a power transformer. A case study is undertaken on a 132kV, 60MVA power transformer.","PeriodicalId":121040,"journal":{"name":"2013 Australasian Universities Power Engineering Conference (AUPEC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2013.6725408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a technique for obtaining accurate parametric models of wideband frequency domain systems is applied to modeling the frequency response of power transformers. Obtaining accurate frequency response models is a problem for conventional identification techniques, and typically results in ill-conditioning due to the frequency range and numerous resonant modes of the transformer. `Frequency Localising Basis Functions' improve the conditioning of the estimator, and hence provide a more accurate fit. The location of these functions are optimized using Particle Swarm Optimization, and applied to frequency response data taken from a power transformer. A case study is undertaken on a 132kV, 60MVA power transformer.
变压器频响识别基函数极点位置优化
本文将宽带频域系统的精确参数化建模技术应用于电力变压器的频率响应建模。获得准确的频率响应模型是传统识别技术的一个难题,并且由于变压器的频率范围和众多的谐振模式,通常会导致失调。“频率定位基函数”改善了估计器的条件,从而提供了更准确的拟合。利用粒子群算法优化了这些函数的位置,并将其应用于电力变压器的频率响应数据。以132kV, 60MVA电力变压器为例进行了案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信