Sequential Task Scheduling for Mobile Edge Computing Using Genetic Algorithm

A. Al-Habob, O. Dobre, A. G. Armada
{"title":"Sequential Task Scheduling for Mobile Edge Computing Using Genetic Algorithm","authors":"A. Al-Habob, O. Dobre, A. G. Armada","doi":"10.1109/GCWkshps45667.2019.9024374","DOIUrl":null,"url":null,"abstract":"In this paper, we consider sequential task offloading to multiple mobile-edge computing servers to providing ultra-reliable low- latency mobile edge computing. The task consists of a set of sub-tasks, with a general dependency model among sub-tasks. Our objective is to minimize both latency and offloading failure probability by scheduling sub-tasks to servers. We formulate an optimization problem with constraints over binary scheduling decision variables. A genetic algorithm is devised to solve the formulated optimization problems. Simulation results show that the proposed algorithm provides performance close to the optimal solution, which is obtained through exhaustive search.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we consider sequential task offloading to multiple mobile-edge computing servers to providing ultra-reliable low- latency mobile edge computing. The task consists of a set of sub-tasks, with a general dependency model among sub-tasks. Our objective is to minimize both latency and offloading failure probability by scheduling sub-tasks to servers. We formulate an optimization problem with constraints over binary scheduling decision variables. A genetic algorithm is devised to solve the formulated optimization problems. Simulation results show that the proposed algorithm provides performance close to the optimal solution, which is obtained through exhaustive search.
基于遗传算法的移动边缘计算顺序任务调度
在本文中,我们考虑将顺序任务卸载到多个移动边缘计算服务器上,以提供超可靠的低延迟移动边缘计算。任务由一组子任务组成,子任务之间有一个通用的依赖模型。我们的目标是通过将子任务调度到服务器来最小化延迟和卸载故障概率。本文构造了一个具有约束的二元调度决策变量的优化问题。设计了一种遗传算法来求解公式化的优化问题。仿真结果表明,该算法的性能接近穷举搜索得到的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信