Preconditioned Gauss-Seidel Method for the Solution of Time-fractional Diffusion Equations

A. Sunarto, J. Sulaiman
{"title":"Preconditioned Gauss-Seidel Method for the Solution of Time-fractional Diffusion Equations","authors":"A. Sunarto, J. Sulaiman","doi":"10.5220/0009882502680273","DOIUrl":null,"url":null,"abstract":": In this paper, we deal with the application of an unconditionally implicit finite difference approximation equation of the one-dimensional linear time fractional diffusion equations via the Caputo’s time fractional derivative. Based on this implicit approximation equation, the corresponding linear system can be generated in which its coefficient matrix is large scale and sparse. To speed up the convergence rate in solving the linear system iteratively, we construct the corresponding preconditioned linear system. Then we formulate and implement the Preconditioned Gauss-Seidel (PGS) iterative method for solving the generated linear system. One example of the problem is presented to illustrate the effectiveness of PGS method. The numerical results of this study show that the proposed iterative method is superior to the basic GS iterative method.","PeriodicalId":135180,"journal":{"name":"Proceedings of the 2nd International Conference on Applied Science, Engineering and Social Sciences","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Applied Science, Engineering and Social Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009882502680273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

: In this paper, we deal with the application of an unconditionally implicit finite difference approximation equation of the one-dimensional linear time fractional diffusion equations via the Caputo’s time fractional derivative. Based on this implicit approximation equation, the corresponding linear system can be generated in which its coefficient matrix is large scale and sparse. To speed up the convergence rate in solving the linear system iteratively, we construct the corresponding preconditioned linear system. Then we formulate and implement the Preconditioned Gauss-Seidel (PGS) iterative method for solving the generated linear system. One example of the problem is presented to illustrate the effectiveness of PGS method. The numerical results of this study show that the proposed iterative method is superior to the basic GS iterative method.
时间分数扩散方程的预条件Gauss-Seidel方法
本文通过Caputo时间分数阶导数,讨论了一维线性时间分数阶扩散方程的无条件隐式有限差分近似方程的应用。基于该隐式近似方程,可以生成相应的系数矩阵规模大且稀疏的线性系统。为了加快线性系统迭代求解的收敛速度,构造了相应的预条件线性系统。然后,我们制定并实现了求解生成的线性系统的预条件高斯-赛德尔(PGS)迭代方法。最后给出了一个算例,说明了PGS方法的有效性。数值结果表明,本文提出的迭代方法优于基本的GS迭代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信