Image segmentation with improved watershed algorithm using radial bases function neural networks

R. A. Husain, A. Zayed, W. Ahmed, H. S. Elhaji
{"title":"Image segmentation with improved watershed algorithm using radial bases function neural networks","authors":"R. A. Husain, A. Zayed, W. Ahmed, H. S. Elhaji","doi":"10.1109/STA.2015.7505174","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved watershed segmentation algorithm that uses RBF Neural Networks for the segmentation of image target objects. Instead of using catchment basin minima in order to define object regions, the technique developed throughout this work deploys RBF neural networks to predict the end boundaries of the segmentation clusters which are formed from the watersheds created in the image histogram topography. The RBF initial parameters, such as centers, and widths, are automatically set upon the histogram peaks and minima respectively. Experimental results of this leaning algorithm make it viable for different applications of gray scale image classifications.","PeriodicalId":128530,"journal":{"name":"2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA.2015.7505174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes an improved watershed segmentation algorithm that uses RBF Neural Networks for the segmentation of image target objects. Instead of using catchment basin minima in order to define object regions, the technique developed throughout this work deploys RBF neural networks to predict the end boundaries of the segmentation clusters which are formed from the watersheds created in the image histogram topography. The RBF initial parameters, such as centers, and widths, are automatically set upon the histogram peaks and minima respectively. Experimental results of this leaning algorithm make it viable for different applications of gray scale image classifications.
基于径向基函数神经网络的改进分水岭图像分割算法
本文提出了一种改进的分水岭分割算法,利用RBF神经网络对图像目标物体进行分割。该技术不是使用集水区最小值来定义目标区域,而是部署RBF神经网络来预测由图像直方图地形中创建的流域形成的分割簇的末端边界。在直方图的峰值和最小值上自动设置RBF的初始参数,如中心和宽度。实验结果表明,该学习算法适用于灰度图像分类的不同应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信