An Efficient Strip-Mining Algorithm for Improving SRF Bandwidth Utilization on Imagine

Wenjing Yang, Jing Du, F. Ao, Xuejun Yang
{"title":"An Efficient Strip-Mining Algorithm for Improving SRF Bandwidth Utilization on Imagine","authors":"Wenjing Yang, Jing Du, F. Ao, Xuejun Yang","doi":"10.1109/SITIS.2007.23","DOIUrl":null,"url":null,"abstract":"Strip-mining is a crucial technique for memory hierarchy optimization. In this paper, we propose an efficient strip-mining algorithm for improving SRF bandwidth utilization on Imagine. Firstly, we present how to determine the optimal kernel set for strip-mining. The process is based on a novel structure proposed by us, namely kernel reuse graph. Secondly, we select the optimal strip size, so as to achieve the tradeoff between stream reuse and stream prefetching. Finally, we propose the efficient strip-mining algorithm, which is implemented in Scompiler. The experiment results show that our strip-mining algorithm is a practical and promising solution to improve SRF locality and hide the memory access overhead effectively on Imagine.","PeriodicalId":234433,"journal":{"name":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2007.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Strip-mining is a crucial technique for memory hierarchy optimization. In this paper, we propose an efficient strip-mining algorithm for improving SRF bandwidth utilization on Imagine. Firstly, we present how to determine the optimal kernel set for strip-mining. The process is based on a novel structure proposed by us, namely kernel reuse graph. Secondly, we select the optimal strip size, so as to achieve the tradeoff between stream reuse and stream prefetching. Finally, we propose the efficient strip-mining algorithm, which is implemented in Scompiler. The experiment results show that our strip-mining algorithm is a practical and promising solution to improve SRF locality and hide the memory access overhead effectively on Imagine.
一种提高Imagine上SRF带宽利用率的条带挖掘算法
条带挖掘是内存层次优化的关键技术。在本文中,我们提出了一种有效的条带挖掘算法来提高Imagine上SRF带宽的利用率。首先,我们给出了如何确定条带开采的最优核集。该过程基于我们提出的一种新的结构,即内核重用图。其次,选择最优条带大小,实现流复用和流预取的权衡。最后,我们提出了一种高效的条带挖掘算法,并在Scompiler中实现。实验结果表明,我们的条带挖掘算法是一种实用且有前途的解决方案,可以有效地提高SRF局域性并隐藏Imagine上的内存访问开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信