Balanced Masked and Standard Face Recognition

Delong Qi, Kangli Hu, Weijun Tan, Qi Yao, Jingfeng Liu
{"title":"Balanced Masked and Standard Face Recognition","authors":"Delong Qi, Kangli Hu, Weijun Tan, Qi Yao, Jingfeng Liu","doi":"10.1109/ICCVW54120.2021.00174","DOIUrl":null,"url":null,"abstract":"We present the improved network architecture, data augmentation, and training strategies for the Webface track and Insightface/Glint360K track of the masked face recognition challenge of ICCV2021. One of the key goals is to have a balanced performance of masked and standard face recognition. In order to prevent the overfitting for the masked face recognition, we control the total number of masked faces by not more than 10% of the total face recognition in the training dataset. We propose a few key changes to the face recognition network including a new stem unit, drop block, face detection and alignment using YOLO5Face, feature concatenation, a cycle cosine learning rate etc. With this strategy, we achieve good and balanced performance for both masked and standard face recognition.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"616 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present the improved network architecture, data augmentation, and training strategies for the Webface track and Insightface/Glint360K track of the masked face recognition challenge of ICCV2021. One of the key goals is to have a balanced performance of masked and standard face recognition. In order to prevent the overfitting for the masked face recognition, we control the total number of masked faces by not more than 10% of the total face recognition in the training dataset. We propose a few key changes to the face recognition network including a new stem unit, drop block, face detection and alignment using YOLO5Face, feature concatenation, a cycle cosine learning rate etc. With this strategy, we achieve good and balanced performance for both masked and standard face recognition.
平衡蒙面和标准人脸识别
我们提出了ICCV2021蒙面人脸识别挑战的Webface赛道和Insightface/Glint360K赛道的改进网络架构、数据增强和训练策略。其中一个关键的目标是要有一个平衡的性能蒙面和标准的人脸识别。为了防止掩模人脸识别的过拟合,我们将训练数据集中的掩模人脸总数控制在不超过人脸识别总量的10%。我们对人脸识别网络提出了一些关键的改变,包括一个新的干单元、下降块、使用YOLO5Face的人脸检测和对齐、特征拼接、循环余弦学习率等。通过这种策略,我们在蒙面人脸识别和标准人脸识别方面都取得了良好的平衡性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信