An approximate maximum-likelihood estimator for localisation using bistatic measurements

D. Fränken
{"title":"An approximate maximum-likelihood estimator for localisation using bistatic measurements","authors":"D. Fränken","doi":"10.1109/SDF.2018.8547074","DOIUrl":null,"url":null,"abstract":"This paper discusses algorithms that can be used to estimate the position of an object by means of bistatic measurements. Some methods known from literature are compared with a new algorithm that is an approximation to a maximum-likelihood estimator for this non-linear localisation problem. Simulation results confirm that the proposed estimator yields errors close to Cramer-Rao lower bound for lower levels of measurement noise while still providing the best performance among the investigated algorithms when the statistical errors on the measurements become large.","PeriodicalId":357592,"journal":{"name":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"86 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2018.8547074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses algorithms that can be used to estimate the position of an object by means of bistatic measurements. Some methods known from literature are compared with a new algorithm that is an approximation to a maximum-likelihood estimator for this non-linear localisation problem. Simulation results confirm that the proposed estimator yields errors close to Cramer-Rao lower bound for lower levels of measurement noise while still providing the best performance among the investigated algorithms when the statistical errors on the measurements become large.
使用双基地测量定位的近似最大似然估计
本文讨论了通过双基地测量来估计目标位置的算法。将文献中已知的一些方法与一种新的算法进行了比较,该算法近似于该非线性局部化问题的最大似然估计。仿真结果表明,对于较低水平的测量噪声,所提出的估计器产生的误差接近Cramer-Rao下界,而当测量的统计误差变大时,所研究的算法仍然具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信