A novel stream-weight method for the multi-stream speech recognition system

Hongyu Guo, Xiaoqun Zhao, Hongmiao Guo
{"title":"A novel stream-weight method for the multi-stream speech recognition system","authors":"Hongyu Guo, Xiaoqun Zhao, Hongmiao Guo","doi":"10.1109/ICICISYS.2010.5658488","DOIUrl":null,"url":null,"abstract":"A multi-stream speech recognition system is based on the combination of multiple complementary feature streams. Utilizing the fusion scheme of multi-stream, better performance was achieved in speech recognition system. The stream-weight method plays a very important role in the fusion collaborative scheme. The stream weights should be selected to be proportional to the feature stream reliability and informativeness. The posterior probability estimate is a measure of reliability, and the classification error is a measure of informativeness. The larger separation between class distributions in a given stream implies better discriminative power. The intra-class distances are an estimate of the class variance. The inter- and intra-class distances are combined to yield and estimate of the misclassification error for each stream. An unsupervised stream weight estimation method for multi-stream speech recognition system based on the computation of intra-and inter-class distances in each stream is proposed here. Experiments are conducted using Chinese Academy of Science speech database. Applying the new stream-weigh algorithm, we achieve better fusion performance compared with some traditional fusion methods, and the word error rate was decreased by 6%.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-stream speech recognition system is based on the combination of multiple complementary feature streams. Utilizing the fusion scheme of multi-stream, better performance was achieved in speech recognition system. The stream-weight method plays a very important role in the fusion collaborative scheme. The stream weights should be selected to be proportional to the feature stream reliability and informativeness. The posterior probability estimate is a measure of reliability, and the classification error is a measure of informativeness. The larger separation between class distributions in a given stream implies better discriminative power. The intra-class distances are an estimate of the class variance. The inter- and intra-class distances are combined to yield and estimate of the misclassification error for each stream. An unsupervised stream weight estimation method for multi-stream speech recognition system based on the computation of intra-and inter-class distances in each stream is proposed here. Experiments are conducted using Chinese Academy of Science speech database. Applying the new stream-weigh algorithm, we achieve better fusion performance compared with some traditional fusion methods, and the word error rate was decreased by 6%.
多流语音识别系统的一种新的流权方法
多流语音识别系统是基于多个互补特征流的组合。利用多流融合方案,实现了较好的语音识别性能。流权法在融合协同方案中起着非常重要的作用。流权值的选择应与特征流的可靠性和信息量成正比。后验概率估计是一种可靠度的度量,分类误差是一种信息量的度量。在给定流中,类分布之间的较大分隔意味着更好的判别能力。类内距离是对类方差的估计。结合类间和类内距离来产生和估计每个流的误分类误差。提出了一种基于类内距离和类间距离计算的多流语音识别系统的无监督流权估计方法。使用中国科学院语音数据库进行实验。与传统的融合方法相比,采用新的流加权算法获得了更好的融合性能,单词错误率降低了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信