A systematic approach to adaptive observer synthesis for nonlinear systems

Y. Cho, R. Rajamani
{"title":"A systematic approach to adaptive observer synthesis for nonlinear systems","authors":"Y. Cho, R. Rajamani","doi":"10.1109/ISIC.1995.525102","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of state estimation from limited sensor measurements in the presence of parameter uncertainty. An adaptive nonlinear observer is suggested for Lipschitz nonlinear systems and the stability of this observer is shown to be related to finding solutions to a quadratic inequality involving two variables. A coordinate transformation is used to reformulate this inequality as a linear matrix inequality. A systematic algorithm is presented which checks for feasibility of a solution to the quadratic inequality and yields an observer whenever the solution is feasible. The state estimates then are guaranteed to converge to zero asymptotically. The convergence of the parameters, however, is determined by a persistence-of-excitation type constraint.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"338","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 338

Abstract

This paper addresses the issue of state estimation from limited sensor measurements in the presence of parameter uncertainty. An adaptive nonlinear observer is suggested for Lipschitz nonlinear systems and the stability of this observer is shown to be related to finding solutions to a quadratic inequality involving two variables. A coordinate transformation is used to reformulate this inequality as a linear matrix inequality. A systematic algorithm is presented which checks for feasibility of a solution to the quadratic inequality and yields an observer whenever the solution is feasible. The state estimates then are guaranteed to converge to zero asymptotically. The convergence of the parameters, however, is determined by a persistence-of-excitation type constraint.
非线性系统自适应观测器综合的系统方法
本文讨论了在存在参数不确定性的情况下,由有限的传感器测量值进行状态估计的问题。针对Lipschitz非线性系统,提出了一种自适应非线性观测器,并证明了该观测器的稳定性与求解涉及两个变量的二次不等式的解有关。一个坐标变换被用来将这个不等式重新表述为一个线性矩阵不等式。提出了一种系统的算法来检验二次不等式解的可行性,并在解可行时产生一个观测器。然后保证状态估计渐近收敛于零。然而,参数的收敛性是由一个持续激励型约束决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信