Integrating a Discrete Motion Model into GMM Based Background Subtraction

Christian Wolf, J. Jolion
{"title":"Integrating a Discrete Motion Model into GMM Based Background Subtraction","authors":"Christian Wolf, J. Jolion","doi":"10.1109/ICPR.2010.11","DOIUrl":null,"url":null,"abstract":"GMM based algorithms have become the de facto standard for background subtraction in video sequences, mainly because of their ability to track multiple background distributions, which allows them to handle complex scenes including moving trees, flags moving in the wind etc. However, it is not always easy to determine which distributions of the mixture belong to the background and which distributions belong to the foreground, which disturbs the results of the labeling process for each pixel. In this work we tackle this problem by taking the labeling decision together for all pixels of several consecutive frames minimizing a global energy function taking into account spatial and temporal relationships. A discrete approximative optical-flow like motion model is integrated into the energy function and solved with Ishikawa's convex graph cuts algorithm.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

GMM based algorithms have become the de facto standard for background subtraction in video sequences, mainly because of their ability to track multiple background distributions, which allows them to handle complex scenes including moving trees, flags moving in the wind etc. However, it is not always easy to determine which distributions of the mixture belong to the background and which distributions belong to the foreground, which disturbs the results of the labeling process for each pixel. In this work we tackle this problem by taking the labeling decision together for all pixels of several consecutive frames minimizing a global energy function taking into account spatial and temporal relationships. A discrete approximative optical-flow like motion model is integrated into the energy function and solved with Ishikawa's convex graph cuts algorithm.
基于GMM背景减法的离散运动模型集成
基于GMM的算法已经成为视频序列中背景减除的事实上的标准,主要是因为它们能够跟踪多个背景分布,这使得它们能够处理复杂的场景,包括移动的树木,在风中移动的旗帜等。然而,确定混合的哪些分布属于背景,哪些分布属于前景并不总是容易的,这会干扰每个像素的标记过程的结果。在这项工作中,我们通过将几个连续帧的所有像素的标记决策放在一起来解决这个问题,最小化了考虑空间和时间关系的全局能量函数。将离散近似的类光流运动模型整合到能量函数中,用石川的凸图切割算法求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信