A. Bouzid, P. Sicard, A. Chériti, H. Chaoui, P. M. Koumba
{"title":"Adaptive hysteresis current control of active power filters for power quality improvement","authors":"A. Bouzid, P. Sicard, A. Chériti, H. Chaoui, P. M. Koumba","doi":"10.1109/EPEC.2017.8286221","DOIUrl":null,"url":null,"abstract":"In power grids, the active power filter (APF) is an important device for compensation of harmonic pollution and reactive power caused by nonlinear loads. However, the control method has a significant influence on the APF performance in eliminating the distorted currents. Henceforth, this paper explores the control of shunt active power filters based on: 1) instantaneous power control strategy (p-q Theory) for extracting the reference currents for APF, and 2) adaptive hysteresis current control (AHCC) strategy for performance evaluation. Different case studies are carried out such as, balanced/unbalanced source with balanced/unbalanced load, distorted source with balanced load in Matlab®/ SimPowerSystems. Simulation results highlight the effectiveness of the proposed control method.","PeriodicalId":141250,"journal":{"name":"2017 IEEE Electrical Power and Energy Conference (EPEC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2017.8286221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In power grids, the active power filter (APF) is an important device for compensation of harmonic pollution and reactive power caused by nonlinear loads. However, the control method has a significant influence on the APF performance in eliminating the distorted currents. Henceforth, this paper explores the control of shunt active power filters based on: 1) instantaneous power control strategy (p-q Theory) for extracting the reference currents for APF, and 2) adaptive hysteresis current control (AHCC) strategy for performance evaluation. Different case studies are carried out such as, balanced/unbalanced source with balanced/unbalanced load, distorted source with balanced load in Matlab®/ SimPowerSystems. Simulation results highlight the effectiveness of the proposed control method.