Dynamic topology optimization based on ant colony optimization

Hyeon-Cheol Jo, Kwang-Seon Yoo, Jae-Yong Park, Seog-young Han
{"title":"Dynamic topology optimization based on ant colony optimization","authors":"Hyeon-Cheol Jo, Kwang-Seon Yoo, Jae-Yong Park, Seog-young Han","doi":"10.1109/ICNC.2012.6234634","DOIUrl":null,"url":null,"abstract":"A modified ant colony optimization algorithm implementing a new definition of pheromone and a new cooperation mechanism between ants is presented in this paper. The study aims at improving the suitability and computational efficiency of the ant colony optimization algorithm in dynamic topology optimization problems. The natural frequencies of the structure must be maximized yet satisfying a constraint on the final volume. Optimization results obtained in three test cases indicate that modified ACO is more efficient and robust than ACO in solving dynamic topology optimization problems.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A modified ant colony optimization algorithm implementing a new definition of pheromone and a new cooperation mechanism between ants is presented in this paper. The study aims at improving the suitability and computational efficiency of the ant colony optimization algorithm in dynamic topology optimization problems. The natural frequencies of the structure must be maximized yet satisfying a constraint on the final volume. Optimization results obtained in three test cases indicate that modified ACO is more efficient and robust than ACO in solving dynamic topology optimization problems.
基于蚁群优化的动态拓扑优化
提出了一种改进的蚁群优化算法,实现了信息素的新定义和蚁群间新的合作机制。本研究旨在提高蚁群优化算法在动态拓扑优化问题中的适用性和计算效率。结构的固有频率必须最大化,同时满足对最终体积的限制。三个测试用例的优化结果表明,改进蚁群算法在求解动态拓扑优化问题时比蚁群算法具有更高的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信