On connection of asymptotic formulas for the counting function and for the characteristic numbers of a compact positive operator

V. Voytickiy
{"title":"On connection of asymptotic formulas for the counting function and for the characteristic numbers of a compact positive operator","authors":"V. Voytickiy","doi":"10.29039/1729-3901-2021-20-2-12-23","DOIUrl":null,"url":null,"abstract":"Let operator G be compact positive operator acting in separable Hilbert space. According with theorem of Hilbert-Schmidt its characteristic numbers μn are positive finite multiple with unique limit point at infinity. In spectral problems of mathematical physics such numbers, as a rule, have power (Weyl’s) asymptotic. Sometimes it is more convenient to use asymptotic of counting function N(r) that is equal to number (taking into account the multiplicity) of characteristic numbers μn in the interval (0; r). For single eigenvalues recalculation of asymptotic formulas is a simple exercise. We prove several theorems on connection between asymptotic of μn and N(r) for an arbitrary compact positive operator G.","PeriodicalId":246257,"journal":{"name":"TAURIDA JOURNAL OF COMPUTER SCIENCE THEORY AND MATHEMATICS","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TAURIDA JOURNAL OF COMPUTER SCIENCE THEORY AND MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/1729-3901-2021-20-2-12-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let operator G be compact positive operator acting in separable Hilbert space. According with theorem of Hilbert-Schmidt its characteristic numbers μn are positive finite multiple with unique limit point at infinity. In spectral problems of mathematical physics such numbers, as a rule, have power (Weyl’s) asymptotic. Sometimes it is more convenient to use asymptotic of counting function N(r) that is equal to number (taking into account the multiplicity) of characteristic numbers μn in the interval (0; r). For single eigenvalues recalculation of asymptotic formulas is a simple exercise. We prove several theorems on connection between asymptotic of μn and N(r) for an arbitrary compact positive operator G.
紧正算子特征数与计数函数渐近公式的联系
设算子G是作用于可分离希尔伯特空间中的紧正算子。根据希尔伯特-施密特定理,其特征数μn是正有限倍,在无穷远处有唯一的极限点。在数学物理的谱问题中,这些数通常具有幂(Weyl’s)渐近性。有时使用计数函数N(r)的渐近性更方便,它等于特征数μn在区间(0;对于单特征值,重新计算渐近公式是一个简单的练习。证明了任意紧正算子G的μn渐近与N(r)之间的联系定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信