{"title":"Uso de uma Rede Neural Convolucional para Análise de Exames de Radiografia de Pulmão com Detecção de Covid-19, Pneumonia e Tuberculose","authors":"Camila Munzlinger, Igor Yepes, Rafael Rieder","doi":"10.5753/sbcas_estendido.2023.229629","DOIUrl":null,"url":null,"abstract":"O trabalho cotidiano de um médico radiologista se mostra deveras árduo, devido a demanda de diagnósticos e laudos requeridos em laboratórios de análises clínicas, a sobrecarga de horas de trabalho e a falta de tempo para a realização de um atendimento coerente com as necessidades dos pacientes. Com isso em mente, este artigo apresenta um sistema baseado em redes neurais convolucionais desenvolvido para auxiliar profissionais radiologistas na sua rotina de trabalho, agilizando diagnósticos e disponibilizando tempo para atendimento mais humanizado. O estudo faz adaptação de um modelo inteligente ResNet-50 utilizando a técnica de transfer learning, com o intuito de predizer doenças pulmonares em imagens de raios-X, sendo elas Covid-19, pneumonia e tuberculose. Após o treinamento do modelo considerando uma base de dados aberta, com imagens validadas, alcançou-se uma acurácia geral de ∼89% na predição de diagnósticos para as doenças citadas.","PeriodicalId":354386,"journal":{"name":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas_estendido.2023.229629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O trabalho cotidiano de um médico radiologista se mostra deveras árduo, devido a demanda de diagnósticos e laudos requeridos em laboratórios de análises clínicas, a sobrecarga de horas de trabalho e a falta de tempo para a realização de um atendimento coerente com as necessidades dos pacientes. Com isso em mente, este artigo apresenta um sistema baseado em redes neurais convolucionais desenvolvido para auxiliar profissionais radiologistas na sua rotina de trabalho, agilizando diagnósticos e disponibilizando tempo para atendimento mais humanizado. O estudo faz adaptação de um modelo inteligente ResNet-50 utilizando a técnica de transfer learning, com o intuito de predizer doenças pulmonares em imagens de raios-X, sendo elas Covid-19, pneumonia e tuberculose. Após o treinamento do modelo considerando uma base de dados aberta, com imagens validadas, alcançou-se uma acurácia geral de ∼89% na predição de diagnósticos para as doenças citadas.