An energy model for graphics processing units

Jeff Pool, A. Lastra, Montek Singh
{"title":"An energy model for graphics processing units","authors":"Jeff Pool, A. Lastra, Montek Singh","doi":"10.1109/ICCD.2010.5647678","DOIUrl":null,"url":null,"abstract":"We present an energy model for a graphics processing unit (GPU) that is based on the amount and type of work performed in various parts of the unit. By designing and running directed tests on a GPU, we measure the energy consumed when performing different arithmetic and memory operations, allowing us to accurately predict the energy that any arbitrary mix of operations will take. With some knowledge of how data travels through and is transformed by the graphics pipeline, we can predict how many of each operation will occur for a given scene, leading to an estimate of the energy usage. We validate our model against different types of existing graphical applications. With an average difference of 3% from measured energy under typical workloads, our model can be used for various purposes. In this work, we explore and present two use cases: 1) predicting the energy performance of applications on a different architecture, and 2) exploring the energy efficiency of different algorithms to achieve the same graphical effect.","PeriodicalId":182350,"journal":{"name":"2010 IEEE International Conference on Computer Design","volume":"446 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2010.5647678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We present an energy model for a graphics processing unit (GPU) that is based on the amount and type of work performed in various parts of the unit. By designing and running directed tests on a GPU, we measure the energy consumed when performing different arithmetic and memory operations, allowing us to accurately predict the energy that any arbitrary mix of operations will take. With some knowledge of how data travels through and is transformed by the graphics pipeline, we can predict how many of each operation will occur for a given scene, leading to an estimate of the energy usage. We validate our model against different types of existing graphical applications. With an average difference of 3% from measured energy under typical workloads, our model can be used for various purposes. In this work, we explore and present two use cases: 1) predicting the energy performance of applications on a different architecture, and 2) exploring the energy efficiency of different algorithms to achieve the same graphical effect.
图形处理单元的能量模型
我们提出了图形处理单元(GPU)的能量模型,该模型基于单元各个部分执行的工作量和类型。通过在GPU上设计和运行定向测试,我们测量了执行不同算术和内存操作时消耗的能量,从而使我们能够准确地预测任何任意混合操作将消耗的能量。通过对数据如何通过图形管道传输和转换的一些了解,我们可以预测每个操作将在给定场景中发生多少次,从而估计能源使用情况。我们针对不同类型的现有图形应用程序验证我们的模型。在典型工作负荷下,我们的模型与测量能量的平均差异为3%,可用于各种目的。在这项工作中,我们探索并提出了两个用例:1)预测不同架构上应用程序的能源性能,以及2)探索不同算法实现相同图形效果的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信