{"title":"Volume decimation of irregular tetrahedral grids","authors":"A. V. Gelder, Vivek Verma, J. Wilhelms","doi":"10.1109/CGI.1999.777958","DOIUrl":null,"url":null,"abstract":"Rendering highly complex models can be time and space prohibitive, and decimation is an important tool in providing simplifications. A decimated model may replace the original entirely or provide level-of-detail approximations. We present and evaluate, quantitatively and qualitatively, methods for rapidly decimating volumetric data defined on a tetrahedral grid. Results are compared using both direct volume rendering and isosurface rendering. A mass-based and a density-based decimation error metric are compared, and the mass-based metric is found to be superior. Grid surface vertices are decimated using a geometric error metric, as well as one of the data-based error metrics. Images produced using direct volume rendering and isosurface extraction on grids that are decimated approximately 80% are nearly indistinguishable from similar images using the non-decimated grids, and even at 95% decimation, the rendered images have few artifacts. Rendering speed-up depends upon the renderer used.","PeriodicalId":165593,"journal":{"name":"1999 Proceedings Computer Graphics International","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Proceedings Computer Graphics International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1999.777958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Rendering highly complex models can be time and space prohibitive, and decimation is an important tool in providing simplifications. A decimated model may replace the original entirely or provide level-of-detail approximations. We present and evaluate, quantitatively and qualitatively, methods for rapidly decimating volumetric data defined on a tetrahedral grid. Results are compared using both direct volume rendering and isosurface rendering. A mass-based and a density-based decimation error metric are compared, and the mass-based metric is found to be superior. Grid surface vertices are decimated using a geometric error metric, as well as one of the data-based error metrics. Images produced using direct volume rendering and isosurface extraction on grids that are decimated approximately 80% are nearly indistinguishable from similar images using the non-decimated grids, and even at 95% decimation, the rendered images have few artifacts. Rendering speed-up depends upon the renderer used.