Experimenting Ensemble Machine Learning for DDoS Classification: Timely Detection of DDoS Using Large Scale Dataset

Hafiz Amaad, Hajrah Mughal
{"title":"Experimenting Ensemble Machine Learning for DDoS Classification: Timely Detection of DDoS Using Large Scale Dataset","authors":"Hafiz Amaad, Hajrah Mughal","doi":"10.1109/ICACS55311.2023.10089656","DOIUrl":null,"url":null,"abstract":"The rapid expansion of the internet has connected the world with a single network. Every network is the victim of a hacker and can be attacked by finding its vulnerabilities. Distributed Daniel of Service (DDoS) attack overwhelms a network and restricts its user from accessing reachable resources. In this study, we aim to employ ensemble ML techniques, such as random forest, histogram-based gradient boosting, and adaptive boosting classifiers, to detect DDoS attacks using the CIC-DDoS2019 dataset. The comparative evaluation results of this study reveal that it provides a higher detection accuracy score (99.9887%) compared to the previous studies.","PeriodicalId":357522,"journal":{"name":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","volume":"467 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS55311.2023.10089656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of the internet has connected the world with a single network. Every network is the victim of a hacker and can be attacked by finding its vulnerabilities. Distributed Daniel of Service (DDoS) attack overwhelms a network and restricts its user from accessing reachable resources. In this study, we aim to employ ensemble ML techniques, such as random forest, histogram-based gradient boosting, and adaptive boosting classifiers, to detect DDoS attacks using the CIC-DDoS2019 dataset. The comparative evaluation results of this study reveal that it provides a higher detection accuracy score (99.9887%) compared to the previous studies.
集成机器学习在DDoS分类中的实验:基于大规模数据集的DDoS实时检测
互联网的迅速发展用一个单一的网络把世界连接起来。每个网络都是黑客的受害者,只要找到其漏洞,就可能遭到攻击。分布式DDoS (Distributed Daniel of Service)攻击使网络陷入瘫痪,限制用户访问可访问的资源。在本研究中,我们的目标是采用集成ML技术,如随机森林、基于直方图的梯度增强和自适应增强分类器,使用CIC-DDoS2019数据集检测DDoS攻击。本研究的对比评价结果显示,与以往的研究相比,本研究提供了更高的检测准确率得分(99.9887%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信