Optimized task scheduling on fog computing environment using meta heuristic algorithms

K. Jayasena, S. ThisarasingheB.
{"title":"Optimized task scheduling on fog computing environment using meta heuristic algorithms","authors":"K. Jayasena, S. ThisarasingheB.","doi":"10.1109/SmartCloud.2019.00019","DOIUrl":null,"url":null,"abstract":"Task scheduling in fog computing is tackled with the use of different kinds of algorithms in general but this paper implements a meta-heuristic based approach. Fog computing is increasingly being adopted because it reduces latency and improves performance. Compared to the cloud data centers that are resource enriched , fog nodes don't have the same luxury and hence with the additional constraint of coordinating a distributed network, task scheduling in Fog Computing is not a trivial task. Since we only have limited capacity in the system, we use meta heuristic algorithms which guarantee a solution to the optimization problem posed here. Here the main research problem was to minimize the energy used in a fog environment.","PeriodicalId":208283,"journal":{"name":"International Conference on Smart Cloud","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Cloud","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartCloud.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Task scheduling in fog computing is tackled with the use of different kinds of algorithms in general but this paper implements a meta-heuristic based approach. Fog computing is increasingly being adopted because it reduces latency and improves performance. Compared to the cloud data centers that are resource enriched , fog nodes don't have the same luxury and hence with the additional constraint of coordinating a distributed network, task scheduling in Fog Computing is not a trivial task. Since we only have limited capacity in the system, we use meta heuristic algorithms which guarantee a solution to the optimization problem posed here. Here the main research problem was to minimize the energy used in a fog environment.
利用元启发式算法优化雾计算环境下的任务调度
雾计算中的任务调度通常使用不同的算法来解决,但本文实现了一种基于元启发式的方法。雾计算越来越多地被采用,因为它减少了延迟并提高了性能。与资源丰富的云数据中心相比,雾节点没有同样的奢侈,因此在协调分布式网络的额外约束下,雾计算中的任务调度不是一项微不足道的任务。由于我们在系统中只有有限的容量,我们使用元启发式算法来保证这里提出的优化问题的解决方案。这里的主要研究问题是最小化在雾环境中使用的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信