{"title":"Design of a novel all-CMOS low power voltage reference circuit","authors":"Yusen Xu, Wei Hu, F. Huang, Jiwei Huang","doi":"10.1109/ASICON.2013.6812028","DOIUrl":null,"url":null,"abstract":"A new low-power voltage reference circuit was proposed using the SMIC 0.18um standard CMOS process technology. The resulting voltage is equal to the extrapolated threshold voltage of a MOSFET at 0K, which was about 620mV for this process. Cadence Spectre simulation results show that the temperature coefficient of the output voltage was 12.9ppm/° in a range from -20 to 80°. The line sensitivity was 328ppm/V in a supply voltage range of 1.2-3V. Meanwhile - 68 dB @ 100Hz of the power supply rejection ratio (PSRR) is reached and it merely consumes 0.21 μ W of power. The proposed circuit is full composed of CMOS devices without any use of resistors, which enjoys the merits of low power consumption and small chip area.","PeriodicalId":150654,"journal":{"name":"2013 IEEE 10th International Conference on ASIC","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2013.6812028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A new low-power voltage reference circuit was proposed using the SMIC 0.18um standard CMOS process technology. The resulting voltage is equal to the extrapolated threshold voltage of a MOSFET at 0K, which was about 620mV for this process. Cadence Spectre simulation results show that the temperature coefficient of the output voltage was 12.9ppm/° in a range from -20 to 80°. The line sensitivity was 328ppm/V in a supply voltage range of 1.2-3V. Meanwhile - 68 dB @ 100Hz of the power supply rejection ratio (PSRR) is reached and it merely consumes 0.21 μ W of power. The proposed circuit is full composed of CMOS devices without any use of resistors, which enjoys the merits of low power consumption and small chip area.