The Hilbert series of Hodge ideals of hyperplane arrangements

Bradley Dirks, M. Mustaţă
{"title":"The Hilbert series of Hodge ideals of hyperplane arrangements","authors":"Bradley Dirks, M. Mustaţă","doi":"10.5427/jsing.2020.20j","DOIUrl":null,"url":null,"abstract":"Given a reduced effective divisor D on a smooth variety X, we describe the generating function for the classes of the Hodge ideals of D in the Grothendieck group of coherent sheaves on X in terms of the motivic Chern class of the complement of the support of D. As an application, we compute the generating function for the Hilbert series of Hodge ideals of a hyperplane arrangement in terms of the Poincare polynomial of the arrangement.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.20j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a reduced effective divisor D on a smooth variety X, we describe the generating function for the classes of the Hodge ideals of D in the Grothendieck group of coherent sheaves on X in terms of the motivic Chern class of the complement of the support of D. As an application, we compute the generating function for the Hilbert series of Hodge ideals of a hyperplane arrangement in terms of the Poincare polynomial of the arrangement.
超平面排列的希尔伯特霍奇理想系列
给定光滑变量X上的约简有效因子D,我们用D的支持补的动力陈类描述了X上相干轴的Grothendieck群中D的Hodge理想类的生成函数。作为应用,我们用超平面排列的庞加莱多项式计算了超平面排列的Hodge理想的Hilbert级数的生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信