Multi-modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing

Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos
{"title":"Multi-modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing","authors":"Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos","doi":"10.1109/ICCVW54120.2021.00292","DOIUrl":null,"url":null,"abstract":"Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.
基于多模态变分更快R-CNN的制造业视觉目标检测
视觉目标检测是各种工业应用的关键任务,如机器人导航,质量控制和产品组装。现代工业环境要求基于人工智能的物体检测方法能够实现高精度、鲁棒性和泛化。为此,我们提出了一种新的物体检测方法,可以处理和融合来自RGB-D图像的信息,以准确检测工业物体。该方法采用了一种新颖的变分Faster R-CNN算法,通过使用VAE编码器-解码器网络和非常强大的注意层,旨在提高原始Faster R-CNN算法的鲁棒性和泛化能力。在两个目标检测数据集(即著名的RGB-D Washington数据集和本文首次提出的工业目标QCONPASS数据集)上的实验结果验证了采用本文提出的方法所取得的显著性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信