Improve R2L Attack Detection Using Trimmed PCA

Zyad Elkhadir, Archi Taha, M. Benattou
{"title":"Improve R2L Attack Detection Using Trimmed PCA","authors":"Zyad Elkhadir, Archi Taha, M. Benattou","doi":"10.1109/COMMNET.2019.8742361","DOIUrl":null,"url":null,"abstract":"Due to the large growth of modern network traffic in term of size and complexity, intrusion detection systems have shown a lot of limits such as the detection rate deterioration and the rising of false positive rate. To overcome this problem, we have to eliminate the noisy content within the original high dimensional data by exploiting a feature extraction method. In literature, many publications proposed to use Principal Component Analysis (PCA). However, this method has an important limitation. The estimated general mean vector is prone to outliers. In this paper, to alleviate this issue, we suggest to exploit the trimmed mean with different percentages. Many experiments on NSL-KDD show a promising results.","PeriodicalId":274754,"journal":{"name":"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMNET.2019.8742361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Due to the large growth of modern network traffic in term of size and complexity, intrusion detection systems have shown a lot of limits such as the detection rate deterioration and the rising of false positive rate. To overcome this problem, we have to eliminate the noisy content within the original high dimensional data by exploiting a feature extraction method. In literature, many publications proposed to use Principal Component Analysis (PCA). However, this method has an important limitation. The estimated general mean vector is prone to outliers. In this paper, to alleviate this issue, we suggest to exploit the trimmed mean with different percentages. Many experiments on NSL-KDD show a promising results.
改进R2L攻击检测使用修剪PCA
由于现代网络流量在规模和复杂性方面的大幅增长,入侵检测系统显示出许多局限性,如检测率下降和误报率上升。为了克服这一问题,我们必须利用特征提取方法去除原始高维数据中的噪声内容。在文献中,许多出版物提出使用主成分分析(PCA)。然而,这种方法有一个重要的限制。估计的一般均值向量容易出现异常值。为了解决这一问题,本文建议利用不同百分比的裁剪平均值。NSL-KDD的许多实验显示了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信