Unsupervised model-based object recognition by parameter estimation of hierarchical mixtures

Vinay P. Kumar, E. Manolakos
{"title":"Unsupervised model-based object recognition by parameter estimation of hierarchical mixtures","authors":"Vinay P. Kumar, E. Manolakos","doi":"10.1109/ICIP.1996.560986","DOIUrl":null,"url":null,"abstract":"Model-based joint segmentation and recognition of objects is proposed in the framework of parameter estimation of hierarchical mixture densities. The maximum a posteriori (MAP) estimate of the parameters is computed by the application of a modified version of the expectation-maximization algorithm (EM with regularizing constraints applied to multiple level hierarchies). The approach is flexible in the sense that it allows for non-stationary pixel statistics, different noise models and is translation and scale invariant. Simulation results suggest that the scheme is well suited for recognition of partially occluded objects and recognition in complex and poorly modeled background.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.560986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Model-based joint segmentation and recognition of objects is proposed in the framework of parameter estimation of hierarchical mixture densities. The maximum a posteriori (MAP) estimate of the parameters is computed by the application of a modified version of the expectation-maximization algorithm (EM with regularizing constraints applied to multiple level hierarchies). The approach is flexible in the sense that it allows for non-stationary pixel statistics, different noise models and is translation and scale invariant. Simulation results suggest that the scheme is well suited for recognition of partially occluded objects and recognition in complex and poorly modeled background.
基于分层混合参数估计的无监督模型目标识别
在分层混合密度参数估计的框架下,提出了基于模型的目标联合分割与识别方法。参数的最大后验(MAP)估计是通过应用期望最大化算法的修改版本来计算的(EM与应用于多级层次结构的正则化约束)。该方法在某种意义上是灵活的,它允许非平稳像素统计,不同的噪声模型,并且是平移和尺度不变的。仿真结果表明,该方法适用于部分遮挡目标的识别,以及复杂和建模不良背景下的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信