Spectral Deconfounding via Perturbed Sparse Linear Models

Domagoj Cevid, Peter Buhlmann, N. Meinshausen
{"title":"Spectral Deconfounding via Perturbed Sparse Linear Models","authors":"Domagoj Cevid, Peter Buhlmann, N. Meinshausen","doi":"10.3929/ETHZ-B-000459190","DOIUrl":null,"url":null,"abstract":"Standard high-dimensional regression methods assume that the underlying coefficient vector is sparse. This might not be true in some cases, in particular in presence of hidden, confounding variables. Such hidden confounding can be represented as a high-dimensional linear model where the sparse coefficient vector is perturbed. For this model, we develop and investigate a class of methods that are based on running the Lasso on preprocessed data. The preprocessing step consists of applying certain spectral transformations that change the singular values of the design matrix. We show that, under some assumptions, one can achieve the optimal $\\ell_1$-error rate for estimating the underlying sparse coefficient vector. Our theory also covers the Lava estimator (Chernozhukov et al. [2017]) for a special model class. The performance of the method is illustrated on simulated data and a genomic dataset.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-B-000459190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Standard high-dimensional regression methods assume that the underlying coefficient vector is sparse. This might not be true in some cases, in particular in presence of hidden, confounding variables. Such hidden confounding can be represented as a high-dimensional linear model where the sparse coefficient vector is perturbed. For this model, we develop and investigate a class of methods that are based on running the Lasso on preprocessed data. The preprocessing step consists of applying certain spectral transformations that change the singular values of the design matrix. We show that, under some assumptions, one can achieve the optimal $\ell_1$-error rate for estimating the underlying sparse coefficient vector. Our theory also covers the Lava estimator (Chernozhukov et al. [2017]) for a special model class. The performance of the method is illustrated on simulated data and a genomic dataset.
基于摄动稀疏线性模型的谱反建立
标准的高维回归方法假设底层系数向量是稀疏的。在某些情况下,这可能不是真的,特别是在存在隐藏的混淆变量的情况下。这种隐藏的混杂可以表示为一个高维的线性模型,其中稀疏系数向量被扰动。对于这个模型,我们开发并研究了一类基于在预处理数据上运行Lasso的方法。预处理步骤包括应用某些谱变换来改变设计矩阵的奇异值。我们证明,在某些假设下,我们可以获得最优的$\ell_1$-错误率来估计潜在的稀疏系数向量。我们的理论还涵盖了用于特殊模型类的熔岩估计器(Chernozhukov等人[2017])。在模拟数据和基因组数据集上验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信