Loss functions to combine learning and decision in multiclass problems

A. Guerrero-Curieses, R. Alaíz-Rodríguez, Jesús Cid-Sueiro
{"title":"Loss functions to combine learning and decision in multiclass problems","authors":"A. Guerrero-Curieses, R. Alaíz-Rodríguez, Jesús Cid-Sueiro","doi":"10.1109/NNSP.2003.1318031","DOIUrl":null,"url":null,"abstract":"The design of structures and algorithms for non-MAP multiclass decision problems is discussed in this paper. We propose a parametric family of loss functions that provide the most accurate estimates for the posterior class probabilities near the decision regions. Moreover, we discuss learning algorithms based on the stochastic gradient minimization of these loss functions. We show that these algorithms behave like sample selectors: samples near the decision regions are the most relevant during learning. Experimental results on some real datasets are also provided to show the effectiveness of this approach versus the classical cross entropy (based on a global posterior probability estimation).","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"570 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The design of structures and algorithms for non-MAP multiclass decision problems is discussed in this paper. We propose a parametric family of loss functions that provide the most accurate estimates for the posterior class probabilities near the decision regions. Moreover, we discuss learning algorithms based on the stochastic gradient minimization of these loss functions. We show that these algorithms behave like sample selectors: samples near the decision regions are the most relevant during learning. Experimental results on some real datasets are also provided to show the effectiveness of this approach versus the classical cross entropy (based on a global posterior probability estimation).
多类问题中结合学习与决策的损失函数
讨论了非map多类决策问题的结构设计和算法设计。我们提出了一组参数损失函数,为决策区域附近的后验类概率提供最准确的估计。此外,我们还讨论了基于这些损失函数的随机梯度最小化的学习算法。我们表明,这些算法的行为就像样本选择器:在学习过程中,决策区域附近的样本是最相关的。在一些真实数据集上的实验结果也显示了该方法相对于经典交叉熵(基于全局后验概率估计)的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信