A new parallel algorithm for the knapsack problem and its implementation on a hypercube

J. Lin, J. Storer
{"title":"A new parallel algorithm for the knapsack problem and its implementation on a hypercube","authors":"J. Lin, J. Storer","doi":"10.1109/FMPC.1990.89428","DOIUrl":null,"url":null,"abstract":"A new parallel algorithm is presented for the 0/1 knapsack problem. On a hypercube of n processors, the algorithm runs in time O(mc(log n)/n), where m is the number of objects and c is the knapsack size. The best previous known hypercube algorithm takes time O(mc/n+c log n+c/sup 2/). The new algorithm has been implemented on the Connection Machine and experimental results show that it performs very well for a wide range of problem sizes.<<ETX>>","PeriodicalId":193332,"journal":{"name":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1990.89428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new parallel algorithm is presented for the 0/1 knapsack problem. On a hypercube of n processors, the algorithm runs in time O(mc(log n)/n), where m is the number of objects and c is the knapsack size. The best previous known hypercube algorithm takes time O(mc/n+c log n+c/sup 2/). The new algorithm has been implemented on the Connection Machine and experimental results show that it performs very well for a wide range of problem sizes.<>
背包问题的一种新的并行算法及其在超立方体上的实现
针对0/1背包问题,提出了一种新的并行算法。在n个处理器的超立方体上,算法运行时间为O(mc(log n)/n),其中m是对象的数量,c是背包的大小。目前已知的最佳超立方算法耗时为O(mc/n+c log n+c/sup 2/)。该算法已在连接机上实现,实验结果表明,该算法对各种规模的问题都有很好的处理效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信