{"title":"Prediction of Job Resource Requirements for Deadline Schedulers to Manage High-Level SLAs on the Cloud","authors":"Gemma Reig, Javier Alonso, Jordi Guitart","doi":"10.1109/NCA.2010.28","DOIUrl":null,"url":null,"abstract":"For a non IT expert to use services in the Cloud is more natural to negotiate the QoS with the provider in terms of service-level metrics --e.g. job deadlines-- instead of resource-level metrics --e.g. CPU MHz. However, current infrastructures only support resource-level metrics --e.g. CPU share and memory allocation-- and there is not a well-known mechanism to translate from service-level metrics to resource-level metrics. Moreover, the lack of precise information regarding the requirements of the services leads to an inefficient resource allocation --usually, providers allocate whole resources to prevent SLA violations. According to this, we propose a novel mechanism to overcome this translation problem using an online prediction system which includes a fast analytical predictor and an adaptive machine learning based predictor. We also show how a deadline scheduler could use these predictions to help providers to make the most of their resources. Our evaluation shows: i) that fast algorithms are able to make predictions with an 11% and 17% of relative error for the CPU and memory respectively; ii) the potential of using accurate predictions in the scheduling compared to simple yet well-known schedulers.","PeriodicalId":276374,"journal":{"name":"2010 Ninth IEEE International Symposium on Network Computing and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth IEEE International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
Abstract
For a non IT expert to use services in the Cloud is more natural to negotiate the QoS with the provider in terms of service-level metrics --e.g. job deadlines-- instead of resource-level metrics --e.g. CPU MHz. However, current infrastructures only support resource-level metrics --e.g. CPU share and memory allocation-- and there is not a well-known mechanism to translate from service-level metrics to resource-level metrics. Moreover, the lack of precise information regarding the requirements of the services leads to an inefficient resource allocation --usually, providers allocate whole resources to prevent SLA violations. According to this, we propose a novel mechanism to overcome this translation problem using an online prediction system which includes a fast analytical predictor and an adaptive machine learning based predictor. We also show how a deadline scheduler could use these predictions to help providers to make the most of their resources. Our evaluation shows: i) that fast algorithms are able to make predictions with an 11% and 17% of relative error for the CPU and memory respectively; ii) the potential of using accurate predictions in the scheduling compared to simple yet well-known schedulers.