A Comparison among Reinforcement Learning Algorithms in Financial Trading Systems

M. Corazza, G. Fasano, R. Gusso, R. Pesenti
{"title":"A Comparison among Reinforcement Learning Algorithms in Financial Trading Systems","authors":"M. Corazza, G. Fasano, R. Gusso, R. Pesenti","doi":"10.2139/ssrn.3522712","DOIUrl":null,"url":null,"abstract":"In this work we analyze and implement different Reinforcement Learning (RL) algorithms in financial trading system applications. RL-based algorithms applied to financial systems aim to find an optimal policy, that is an optimal mapping between the variables describing the state of the system and the actions available to an agent, by interacting with the system itself in order to maximize a cumulative return. In this contribution we compare the results obtained considering different on-policy (SARSA) and off-policy (Q-Learning, Greedy-GQ) RL algorithms applied to daily trading in the Italian stock market. We consider both computational issues related to the implementation of the algorithms, and issues originating from practical application to real stock markets, in an effort to improve previous results while keeping a simple and understandable structure of the used models.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3522712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work we analyze and implement different Reinforcement Learning (RL) algorithms in financial trading system applications. RL-based algorithms applied to financial systems aim to find an optimal policy, that is an optimal mapping between the variables describing the state of the system and the actions available to an agent, by interacting with the system itself in order to maximize a cumulative return. In this contribution we compare the results obtained considering different on-policy (SARSA) and off-policy (Q-Learning, Greedy-GQ) RL algorithms applied to daily trading in the Italian stock market. We consider both computational issues related to the implementation of the algorithms, and issues originating from practical application to real stock markets, in an effort to improve previous results while keeping a simple and understandable structure of the used models.
金融交易系统中强化学习算法的比较
在这项工作中,我们分析和实现了不同的强化学习(RL)算法在金融交易系统中的应用。应用于金融系统的基于强化学习的算法旨在找到最优策略,即描述系统状态的变量与代理可采取的行动之间的最优映射,通过与系统本身交互以最大化累积回报。在这篇文章中,我们比较了考虑不同的政策上(SARSA)和政策外(Q-Learning, Greedy-GQ) RL算法应用于意大利股票市场的日常交易的结果。我们考虑了与算法实现相关的计算问题,以及来自实际股票市场的实际应用问题,以努力改进以前的结果,同时保持所用模型的简单易懂的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信