Learning feature transforms is an easier problem than feature selection

K. Torkkola
{"title":"Learning feature transforms is an easier problem than feature selection","authors":"K. Torkkola","doi":"10.1109/ICPR.2002.1048248","DOIUrl":null,"url":null,"abstract":"We argue that optimal feature selection is intrinsically a harder problem than learning discriminative feature transforms, provided a suitable criterion for the latter. We discuss mutual information between class labels and transformed features as such a criterion. Instead of Shannon's definition we use measures based on Renyi entropy, which lends itself into an efficient implementation and an interpretation of \"information forces\" induced by samples of data that drive the transform.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We argue that optimal feature selection is intrinsically a harder problem than learning discriminative feature transforms, provided a suitable criterion for the latter. We discuss mutual information between class labels and transformed features as such a criterion. Instead of Shannon's definition we use measures based on Renyi entropy, which lends itself into an efficient implementation and an interpretation of "information forces" induced by samples of data that drive the transform.
学习特征变换是一个比特征选择更容易的问题
我们认为最优特征选择本质上是一个比学习判别特征变换更难的问题,为后者提供了一个合适的准则。我们讨论了类标签和变换后的特征之间的互信息。我们没有使用香农的定义,而是使用了基于Renyi熵的度量,它有助于有效地实现和解释由驱动转换的数据样本引起的“信息力量”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信