M. Bilokur, A. Gentle, M. Arnold, M. Cortie, G. Smith
{"title":"Optical properties of refractory TiN, AlN and (Ti,Al)N coatings","authors":"M. Bilokur, A. Gentle, M. Arnold, M. Cortie, G. Smith","doi":"10.1117/12.2202403","DOIUrl":null,"url":null,"abstract":"Titanium nitride is a golden-colored semiconductor with metallic optical properties. It is already widely used in room temperature spectrally-selective coatings. In contrast, aluminum nitride is a relatively wide-band gap, non-metallic material. Both nitrides have exceptional thermal stability, to over 1000 °C, but are susceptible to oxidation. We will show here that composite coatings consisting of these materials and their complex oxides have considerable potential for spectrally-selective applications, including at elevated temperatures. In particular, we examine the metastable materials produced by magnetron sputtering. The effective dielectric functions of these materials can be tuned over a wide range by manipulation of their microstructure. This provides a strategy to assemble materials with tunable dielectric functions using a 'bottom-up' approach. The results are compared to those achievable by conventional, 'top-down', planar optical stacks comprised of alternating layers of TiNx and AlN.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2202403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Titanium nitride is a golden-colored semiconductor with metallic optical properties. It is already widely used in room temperature spectrally-selective coatings. In contrast, aluminum nitride is a relatively wide-band gap, non-metallic material. Both nitrides have exceptional thermal stability, to over 1000 °C, but are susceptible to oxidation. We will show here that composite coatings consisting of these materials and their complex oxides have considerable potential for spectrally-selective applications, including at elevated temperatures. In particular, we examine the metastable materials produced by magnetron sputtering. The effective dielectric functions of these materials can be tuned over a wide range by manipulation of their microstructure. This provides a strategy to assemble materials with tunable dielectric functions using a 'bottom-up' approach. The results are compared to those achievable by conventional, 'top-down', planar optical stacks comprised of alternating layers of TiNx and AlN.