Parallel Computation of Event-Based Visual Features Using Relational Graphs

Daniel R. Mendat, Jonah P. Sengupta, Drake K. Foreman, A. Andreou
{"title":"Parallel Computation of Event-Based Visual Features Using Relational Graphs","authors":"Daniel R. Mendat, Jonah P. Sengupta, Drake K. Foreman, A. Andreou","doi":"10.1109/CISS50987.2021.9400272","DOIUrl":null,"url":null,"abstract":"A graphical framework to approximate visual features from spike-based sensor data has been demonstrated. An event-based camera or dynamic vision sensor (DVS) provides the sensory input into the network which computes the intrascene optical flow, spatial gradient, and absolute intensity. The network uses the sparse, event-based input along with fundamental relations in parallel to converge upon quantities via incremental optimization. An event-based algorithm to compute optical flow was used to provide another stream of input into the network to aid convergence. A full network has been deployed in Python and parallelized to demonstrate its potential deployment on specialized hardware.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A graphical framework to approximate visual features from spike-based sensor data has been demonstrated. An event-based camera or dynamic vision sensor (DVS) provides the sensory input into the network which computes the intrascene optical flow, spatial gradient, and absolute intensity. The network uses the sparse, event-based input along with fundamental relations in parallel to converge upon quantities via incremental optimization. An event-based algorithm to compute optical flow was used to provide another stream of input into the network to aid convergence. A full network has been deployed in Python and parallelized to demonstrate its potential deployment on specialized hardware.
基于关系图的事件视觉特征并行计算
一个图形框架,以近似的视觉特征,从基于峰值的传感器数据已经证明。基于事件的相机或动态视觉传感器(DVS)为网络提供感官输入,该网络计算上升内光流、空间梯度和绝对强度。该网络使用稀疏的、基于事件的输入以及并行的基本关系,通过增量优化来收敛数量。一种基于事件的光流计算算法为网络提供了另一种输入流,以帮助收敛。在Python中部署了一个完整的网络,并进行了并行化,以演示其在专用硬件上的潜在部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信