Analisis Rainbow Antimagic Coloring Pada Hasil Operasi Comb Graf Lintasan

Feby Suryandana
{"title":"Analisis Rainbow Antimagic Coloring Pada Hasil Operasi Comb Graf Lintasan","authors":"Feby Suryandana","doi":"10.25037/cgantjma.v2i2.63","DOIUrl":null,"url":null,"abstract":"All the graphs in this paper are connected graphs. Let $G=(V,E)$ where $V(G)$ is a set of vertex from graph $G$ while $E(G)$ is a set of edge from graph $G$. A bijection function $f: V \\rightarrow \\{1,2,3,...,\\lvert V(G)\\rvert\\}$ the associated weight of an edge $uv \\in E(G)$ under $f$ is $W_f{(uv)}=f(u)+f(v)$. A path $P$ in a vertex-labeled graph $G$ is said to be a rainbow path if for every two edges $uv$, $u'v' \\in E(P)$, there is $w_f{(uv)}\\neq w_f{u'v'}$. If for every two vertices $u$ and $v$ of $G$, there is a rainbow $u$-$v$ path, then $f$ is called a rainbow antimagic labeling of $G$. A graph $G$ is rainbow antimagic if $G$ has a rainbow antimagic labeling. The minimum number of color needed to make $G$ rainbow connected, called rainbow antimagic connection number, denoted by rac(G). In this paper, we will analyze the rainbow antimagic coloring on comb product of path graph.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v2i2.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All the graphs in this paper are connected graphs. Let $G=(V,E)$ where $V(G)$ is a set of vertex from graph $G$ while $E(G)$ is a set of edge from graph $G$. A bijection function $f: V \rightarrow \{1,2,3,...,\lvert V(G)\rvert\}$ the associated weight of an edge $uv \in E(G)$ under $f$ is $W_f{(uv)}=f(u)+f(v)$. A path $P$ in a vertex-labeled graph $G$ is said to be a rainbow path if for every two edges $uv$, $u'v' \in E(P)$, there is $w_f{(uv)}\neq w_f{u'v'}$. If for every two vertices $u$ and $v$ of $G$, there is a rainbow $u$-$v$ path, then $f$ is called a rainbow antimagic labeling of $G$. A graph $G$ is rainbow antimagic if $G$ has a rainbow antimagic labeling. The minimum number of color needed to make $G$ rainbow connected, called rainbow antimagic connection number, denoted by rac(G). In this paper, we will analyze the rainbow antimagic coloring on comb product of path graph.
本文中的图都是连通图。设$G=(V,E)$,其中$V(G)$是来自图$G$的顶点集合,$E(G)$是来自图$G$的边集合。一个双射函数$f: V \rightarrow \{1,2,3,...,\lvert V(G)\rvert\}$,一条边$uv \in E(G)$在$f$下的关联权值为$W_f{(uv)}=f(u)+f(v)$。顶点标记图$G$中的路径$P$被称为彩虹路径,如果对于每两条边$uv$, $u'v' \in E(P)$,存在$w_f{(uv)}\neq w_f{u'v'}$。如果对于$G$的每两个顶点$u$和$v$,都有一条彩虹$u$ - $v$路径,则$f$被称为$G$的彩虹反魔术标记。如果$G$有彩虹反魔术标签,则图表$G$是彩虹反魔术。使$G$彩虹连接所需的最小颜色数,称为彩虹反魔连接数,用rac(G)表示。本文分析了路径图梳积上的彩虹反幻着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信