A semi-supervised fuzzy co-clustering framework and application to twitter data analysis

Katsuhiro Honda, S. Ubukata, A. Notsu, Norimitsu Takahashi, Yutaka Ishikawa
{"title":"A semi-supervised fuzzy co-clustering framework and application to twitter data analysis","authors":"Katsuhiro Honda, S. Ubukata, A. Notsu, Norimitsu Takahashi, Yutaka Ishikawa","doi":"10.1109/ICIEV.2015.7334057","DOIUrl":null,"url":null,"abstract":"Semi-supervised clustering is an efficient scheme for utilizing data with partial class information, where unsupervised data distributions are estimated under some supports of partial supervised class information. In this paper, a novel framework for performing fuzzy co-clustering of cooccurrence information with partial supervision is proposed, which is induced by multinomial mixture concept. Co-clustering is useful for extracting object-item pair-wise clusters from cooccurrence information and has been utilized in various applications such as document-keyword analysis and customer-products purchase history data analysis. Several experimental results including a twitter data analysis demonstrate the ability of improving the classification quality of the fuzzified co-cluster structural knowledge. Then, the proposed semi-supervised framework is expected to be a powerful tool in Big Data analysis with huge volumes of data but partial supervisions only.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Semi-supervised clustering is an efficient scheme for utilizing data with partial class information, where unsupervised data distributions are estimated under some supports of partial supervised class information. In this paper, a novel framework for performing fuzzy co-clustering of cooccurrence information with partial supervision is proposed, which is induced by multinomial mixture concept. Co-clustering is useful for extracting object-item pair-wise clusters from cooccurrence information and has been utilized in various applications such as document-keyword analysis and customer-products purchase history data analysis. Several experimental results including a twitter data analysis demonstrate the ability of improving the classification quality of the fuzzified co-cluster structural knowledge. Then, the proposed semi-supervised framework is expected to be a powerful tool in Big Data analysis with huge volumes of data but partial supervisions only.
半监督模糊共聚类框架及其在twitter数据分析中的应用
半监督聚类是一种利用部分类信息数据的有效方法,它在部分监督类信息的支持下估计无监督数据的分布。本文利用多项混合概念,提出了一种具有部分监督的协同信息模糊共聚的新框架。协同聚类对于从协同信息中提取对象-项目成对聚类很有用,并已用于文档关键字分析和客户-产品购买历史数据分析等各种应用程序中。包括twitter数据分析在内的几个实验结果表明,模糊共聚类结构知识的分类质量得到了提高。然后,所提出的半监督框架有望成为大数据分析的强大工具,数据量巨大,但只有部分监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信