Image Edge Detection Base on Conditional Generative Adversarial Nets

MingYun He, Yulun Wu, Xiaofang Li, Jinyi Liu, Xiaofeng Gu
{"title":"Image Edge Detection Base on Conditional Generative Adversarial Nets","authors":"MingYun He, Yulun Wu, Xiaofang Li, Jinyi Liu, Xiaofeng Gu","doi":"10.1109/ICCWAMTIP.2018.8632607","DOIUrl":null,"url":null,"abstract":"We propose a method to prepare for developing the quality of the reconstructing objects from edge detection. We know that some conditional generative adversarial networks like pix2pix, learn a loss function to train the mapping from input image and output image. In case of using single mapping, we cannot guarantee that all samples in X and all samples in the Y are reasonably corresponding. So, we suppose to utilize bijection and we make the optimization for the pix2pix'U-net, which can develop our model to reconstruct objects from edge detection needing to be repaired. These can let our image generated by edge detection with our method get less probability of mode collapse and ensure the image style more similar to samples.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a method to prepare for developing the quality of the reconstructing objects from edge detection. We know that some conditional generative adversarial networks like pix2pix, learn a loss function to train the mapping from input image and output image. In case of using single mapping, we cannot guarantee that all samples in X and all samples in the Y are reasonably corresponding. So, we suppose to utilize bijection and we make the optimization for the pix2pix'U-net, which can develop our model to reconstruct objects from edge detection needing to be repaired. These can let our image generated by edge detection with our method get less probability of mode collapse and ensure the image style more similar to samples.
基于条件生成对抗网络的图像边缘检测
提出了一种从边缘检测中提高重建对象质量的方法。我们知道一些条件生成对抗网络,比如pix2pix,学习一个损失函数来训练从输入图像到输出图像的映射。在使用单一映射的情况下,我们不能保证X中的所有样本和Y中的所有样本都是合理对应的。因此,我们设想利用双射,并对pix2pix'U-net进行优化,使我们的模型能够从需要修复的边缘检测中重建物体。这使得用我们的方法进行边缘检测生成的图像具有更小的模式崩溃概率,并保证图像样式更接近样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信